

QuickTime Streaming Server
Modules

August 29, 2003



 Apple Computer, Inc.
© 1999-2003 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and QuickTime are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3



 Apple Computer, Inc. August 29, 2003

Contents

Figures, Listings, and Tables 11

Preface 1

About This Manual

What’s New 13
Conventions Used in This Manual 14
For More Information 14

Chapter 2

Concepts

Server Architecture 18
Modules 20

Content-Managing Modules 20
Server-Support Modules 20
Access Control Modules 20

Protocols 21
Data 22
Classes 23
Applications and Tools 25

PlayListBroadcaster 25
MP3Broadcaster 25
StreamingProxy 25
QTFileTools 25
WebAdmin 26
qtpasswd 26

Source Organization 27
Server.tproj 27
CommonUtilitiesLib 28
QTFileLib 28
APICommonCode 29

4



 Apple Computer, Inc. August 29, 2003

C O N T E N T S

APIModules 29
RTSPClientLib 29
RTCPUtilitiesLib 29
APIStubLib 29
HTTPUtilitiesLib 29

Requirements for Modules 29
Main Routine 30
Dispatch Routine 30

Overview of QuickTime Streaming Server Operations 31
Server Startup and Shutdown 31
RTSP Request Processing 33

Runtime Environment for QTSS Modules 38
Server Time 38

Naming Conventions 39
Module Roles 40

Register Role 42
Initialize Role 42
Shutdown Role 43
Reread Preferences Role 44
Error Log Role 44
RTSP Roles 45

RTSP Filter Role 46
RTSP Route Role 47
RTSP Preprocessor Role 48
RTSP Request Role 50
RTSP Postprocessor Role 51

RTP Roles 52
RTP Send Packets Role 52
Client Session Closing Role 53

RTCP Process Role 54
QTSS Objects 56

qtssAttrInfoObjectType 57
qtssClientSessionObjectType 57
qtssConnectedUserObjectType 61
qtssDynamicObjectType 63
qtssFileObjectType 63
qttsModuleObjectType 64
qtssModulePrefsObjectType 66

C O N T E N T S

5



 Apple Computer, Inc. August 29, 2003

QTSSAccessLogModule Preferences 66
QTSSAccessModule Preferences 67
QTSSAdminModule Preferences 68
QTSSFileModule Preferences 69
QTSSFlowControlModule Preferences 71
QTSSHomeDirectoryModule Preferences 72
QTSSMP3StreamingModule Preferences 73
QTSSReflectorModule Preferences 74
QTSSRefMovieModule Preferences 78
QTSSRelayModule Preferences 79

qtssPrefsObjectType 79
qtssRTPStreamObjectType 95
qtssRTSPHeaderObjectType 99
qtssRTSPRequestObjectType 100
qtssRTSPSessionObjectType 104
qtssServerObjectType 106
qtssTextMessageObjectType 111
qtssUserProfileObjectType 115

QTSS Streams 116
QTSS Services 119

Built-in Services 121
Automatic Broadcasting 121

Automatic Broadcasting Scenarios 122
Pull Then Push 122
Listen Then Push 123

ANNOUNCE Requests and SDP 124
Access Control of Announced Broadcasts 125
Broadcaster-to-Server Example 126
Additional Trace Examples 128

Trace of QuickTime Broadcaster Using TCP 129
Trace of UDP Broadcast with Negotiated Server Ports 133
Trace of ANNOUNCE and RECORD Using UDP Transport 136

Stream Caching 138
Speed RTSP Header 139
x-Transport-Options Header 140
RTP Payload Meta-Information 141

RTP Data 141
Standard Format 143

6



 Apple Computer, Inc. August 29, 2003

C O N T E N T S

Compressed Format 146
Negotiation for Use of Compressed Format 147

x-Packet-Range RTSP Header 148
Reliable UDP 149

Acknowledgment Packets 150
RTSP Negotiation 151

Tunneling RTSP and RTP Over HTTP 152
HTTP Client Request Requirements 153

Sample Client GET Request 153
Sample Client POST Request 154

HTTP Server Reply Requirements 154
Sample Server Reply to a GET Request 155

RTSP Request Encoding 156
Connection Maintenance 156
Support For Other HTTP Features 156

Chapter 3

Tasks

Building the Streaming Server 157
Mac OS X 158
POSIX 158
Windows 158

Building a QuickTime Streaming Server Module 158
Compiling a QTSS Module into the Server 158
Building a QTSS Module as a Code Fragment 159

Debugging 160
RTSP and RTP Debugging 160
Source File Debugging Support 161

Working with Attributes 162
Getting Attribute Values 162
Setting Attribute Values 164
Adding Attributes 166

Using Files 168
Reading Files Using Callback Routines 168
Implementing a QTSS File System Module 170

File System Module Roles 172
Sample Code for the Open File Role 179

C O N T E N T S

7



 Apple Computer, Inc. August 29, 2003

Implementing Asynchronous Notifications 180
Using the Admin Protocol 181

Access to Server Data 182
Request Syntax 182
Request Functionality 183
Data References 184
Request Options 184
Command Options 184

GET Command Option 185
SET Command Option 185
DEL Command Option 185
ADD Command Option 186
Parameter Options 186

Attribute Access Types 187
Data Types 187
Server Responses 187

Unauthorized Response 188
OK Response 188
Response Data 188
Array Values 189
Response Root 190
Errors in Responses 190
Request and Response Examples 191

Changing Server Settings 194
Getting and Setting Preferences 194
Getting and Changing the Server’s State 195

Chapter 4

QuickTime Streaming Server Module Reference

QTSS Callback Routines 197
QTSS Utility Callback Routines 198

QTSS_AddRole 198
QTSS_New 199
QTSS_Delete 199
QTSS_Milliseconds 200
QTSS_MilliSecsTo1970Secs 200

QTSS Object Callback Routines 201

8



 Apple Computer, Inc. August 29, 2003

C O N T E N T S

QTSS_CreateObjectType 201
QTSS_CreateObjectValue 202
QTSS_LockObject 203
QTSS_UnLockObject 204

QTSS Attribute Callback Routines 204
QTSS_AddInstanceAttribute 205
QTSS_AddStaticAttribute 207
QTSS_GetAttrInfoByID 208
QTSS_GetAttrInfoByIndex 209
QTSS_GetAttrInfoByName 210
QTSS_GetNumAttributes 211
QTSS_GetValue 212
QTSS_GetValueAsString 213
QTSS_GetValuePtr 214
QTSS_IDForAttr 215
QTSS_RemoveInstanceAttribute 216
QTSS_RemoveValue 217
QTSS_SetValue 218
QTSS_SetValuePtr 219
QTSS_StringToValue 220
QTSS_TypeStringToType 221
QTSS_TypeToTypeString 222
QTSS_ValueToString 223

Stream Callback Routines 223
QTSS_Advise 224
QTSS_Read 225
QTSS_Seek 225
QTSS_RequestEvent 226
QTSS_SignalStream 227
QTSS_Write 228
QTSS_WriteV 229
QTSS_Flush 230

File System Callback Routines 230
QTSS_OpenFileObject 231
QTSS_CloseFileObject 231

Service Callback Routines 232
QTSS_AddService 232
QTSS_IDForService 233

C O N T E N T S

9



 Apple Computer, Inc. August 29, 2003

QTSS_DoService 234
RTSP Header Callback Routines 234

QTSS_AppendRTSPHeader 235
QTSS_SendRTSPHeaders 235
QTSS_SendStandardRTSPResponse 236

RTP Callback Routines 238
QTSS_AddRTPStream 238
QTSS_Play 239
QTSS_Pause 240
QTSS_Teardown 241

QTSS Data Types 241
QTSS_AttributeID 242
QTSS_Object 242
QTSS_ObjectType 243
QTSS_Role 244
QTSS_ServiceID 244
QTSS_StreamRef 244
QTSS_TimeVal 245

QTSS Constants 245
QTSS_AttrDataType 246
QTSS_AttrPermission 248
QTSS_AddStreamFlags 248
QTSS_CliSesTeardownReason 249
QTSS_EventType 250
QTSS_OpenFileFlags 250
QTSS_RTPPayloadType 251
QTSS_RTPNetworkMode 252
QTSS_RTPSessionState 252
QTSS_RTPTransportType 253
QTSS_RTSPSessionType 253
QTSS_ServerState 254

10



 Apple Computer, Inc. August 29, 2003

C O N T E N T S

11



 Apple Computer, Inc. August 29, 2003

Figures, Listings, and Tables

Chapter 2

Concepts

Figure 2-1 Server architecture 19
Figure 2-2 Server object data model 24
Figure 2-3 QuickTime Streaming Server startup and shutdown 32
Figure 2-4 Sample RTSP request 33
Figure 2-5 Summary of RTSP request processing 34
Figure 2-6 Summary of the RTSP Preprocessor and RTSP Request roles 37
Figure 2-7 Pull-then-push automatic broadcasting 122
Figure 2-8 Listen-then-push automatic broadcasting 123
Figure 2-9 Standard RTP payload meta-information format 144
Figure 2-10 RTP data in standard format 145
Figure 2-11 Compressed RTP payload meta-information format 146
Figure 2-12 Mixed RTP payload meta-information format 147
Figure 2-13 Reliable UDP acknowledgment packet format 151
Figure 2-14 Required connections for tunneling 153
Listing 2-1 Starting a service 120
Table 2-1 Module roles 40
Table 2-2 Attributes of objects of type qtssAttrInfoObjectType 57
Table 2-3 Attributes of objects of type qtssClientSessionObjectType 58
Table 2-4 Attributes of objects of type qtssConnectedUserObjectType 62
Table 2-5 Attributes of objects of type qtssFileObjectType 64
Table 2-6 Attributes of objects of type qtssModuleObjectType 65
Table 2-7 Attributes for preferences of the module

QTSSAccessLogModule 66
Table 2-8 Attributes for preferences of the module QTSSAccessModule 67
Table 2-9 Attributes for preferences of the module QTSSAdminModule 68
Table 2-10 Attributes for preferences of the module QTSSFileModule 69
Table 2-11 Attributes for preferences of the module

QTSSFlowControlModule 71
Table 2-12 Attributes for preferences of the module

QTSSHomeDirectoryModule 72

12



 Apple Computer, Inc. August 29, 2003

F I G U R E S , L I S T I N G S , A N D T A B L E S

Table 2-13 Attributes for preferences of the module
QTSSMP3StreamingModule 73

Table 2-14 Attributes for preferences of the module
QTSSReflectorModule 74

Table 2-15 Attributes for preferences of the module
QTSSRefMovieModule 78

Table 2-16 Attributes for preferences of the module QTSSRelayModule 79
Table 2-17 Attributes of objects of type qtssPrefsObjectType 80
Table 2-18 Attributes of objects of type qtssRTPStreamObjectType 96
Table 2-19 Attributes of type qtssRTSPRequestObjectType 101
Table 2-20 Attributes of objects of type qtssRTSPSessionObjectType 105
Table 2-21 Attributes of objects of type qtssServerObjectType 107
Table 2-22 Attributes of objects of type qtssTextMessageObjectType 111
Table 2-23 Attributes of objects of type qtssUserProfileObjectType 116
Table 2-24 Streams and appropriate callback routines 119
Table 2-25 Access control user tags 125
Table 2-26 Defined Name subfield values 143

Chapter 3

Tasks

Listing 3-1 Getting the value of an attribute by calling QTSS_GetValue 163
Listing 3-2 Getting the value of an attribute by calling

QTSS_GetValuePtr 163
Listing 3-3 Getting the value of an attribute by calling

QTSS_GetValueAsString 164
Listing 3-4 Setting the value of an attribute by calling QTSS_SetValue 165
Listing 3-5 Setting the value of an attribute by calling QTSS_SetValuePtr 166
Listing 3-6 Adding a static attribute 167
Listing 3-7 Reading a file 169
Listing 3-8 Handling the Open File Role 179

13



 Apple Computer, Inc. August 29, 2003

P R E F A C E 1

1 About This Manual

This manual describes version 4.0 of the programming interface for creating
QuickTime Streaming Server (QTSS) modules for the open source Darwin
Streaming Server. The QTSS programming interface provides an easy way for
developers to add new functionality to the Streaming Server. This version of the
programming interface is compatible with QuickTime Streaming Server version 5.

What’s New

Version 4.0 of the QTSS programming interface provides the following new
features:

�

Server preferences are now generated dynamically. If the file

StreamingServer.xml

 does not exist, a file of that name is created and the server
preferences are written to it. Changing the value of a server preference is not
supported. The server does not perform range checking of its server preferences.

�

Automatically deleting SDP files is no longer supported. The

qtssAutoDeleteSDPFiles

 attribute of the

qtssPrefsObjectType

has changed from

true

 to

false

 and remains for compatibility with previous versions of the API.

�

The default value of the

qtssEnableMonitorStatsFile

 attribute of the

qtssPrefsObjectType

has changed from

true

 to

false

.

�

The following attributes have been added to the

qtssPrefsObjectType

:

qtssEnableRTSPServerInfo

,

qtssRunNumThreads

,

qtssPrefsPidFile

, and

qtssPrefsCloseLogsOnWrite

.

14



 Apple Computer, Inc. August 29, 2003

P R E F A C E 1

About This Manual

Conventions Used in This Manual

The

Letter Gothic

 font is used to indicate text that you type or see displayed. This
manual includes special text elements to highlight important or supplemental
information:

Note:

Text set off in this manner presents sidelights or
interesting points of information.

Important

Text set off in this manner—with the word
Important—presents important
information or instructions.

W A R N I N G

Text set off in this manner—with the word
Warning—indicates potentially serious
problems.

For More Information

Go to

http://www.opensource.apple.com

 to register as a member of the Apple open
source community. Then download the source code for the Darwin Streaming
Server at

http://www.publicsource.apple.com/projects/streaming

. The source
code’s Documentation directory contains valuable information:

�

AboutTheSource.html

�

DevNotes.html

�

SourceCodeFAQ.html

The following RFCs provide additional information of interest to developers of
QuickTime Streaming Server modules and are available at many locations on the
Internet:

P R E F A C E 1

About This Manual

15



 Apple Computer, Inc. August 29, 2003

�

RFC 2326, Real Time Streaming Protocol (RTSP)

�

RFC 1889, RTP: A Transport Protocol for Real-Time Applications

�

RFC 2327, SDP: Session Description Protocol

�

RFC 2616, HTTP 1.1

For an overview of the Darwin Streaming Server and links to the latest QuickTime
information, go to

http://developer.apple.com/darwin/projects/streaming

Go to

http://developer.apple.com/techpubs/quicktime

 for QuickTime developer
documentation.

Communicate with other Darwin Streaming Server developers by joining the
discussion list at

http://lists.apple.com/mailman/listinfo/streaming-server-developers

.

See what with other Darwin Streaming Server developers are doing by joining the
discussion list at

http://lists.apple.com/mailman/listinfo/publicsource-modifications

.

16



 Apple Computer, Inc. August 29, 2003

P R E F A C E 1

About This Manual

17



 Apple Computer, Inc. August 29, 2003

C H A P T E R 2

2 Concepts

This manual describes version 4.0 of the programming interface for creating
QuickTime Streaming Server (QTSS) modules. This version of the programming
interface is compatible with QuickTime Streaming Server version 5.

QTSS is an open-source, standards-based streaming server that runs on Windows
NT and Windows 2000 and several UNIX implementations, including Mac OS X,
Linux, FreeBSD, and the Solaris operating system. To use the programming
interface for the QuickTime Streaming Server, you should be familiar with the
following Internet Engineering Task Force (IETF) protocols that the server
implements:

�

Real Time Streaming Protocol (RTSP)

�

Real Time Transport Protocol (RTP)

�

Real Time Transport Control Protocol (RTCP)

�

Session Description Protocol (SDP)

This manual describes how to use the QTSS programming interface to develop
QTSS modules for the QuickTime Streaming Server. Using the programming
interface described in this manual allows your application to take advantage of the
server’s scalability and protocol implementation in a way that will be compatible
with future versions of the QuickTime Streaming Server. Most of the core features
of the QuickTime Streaming Server are implemented as modules, so support for
modules has been designed into the core of the server.

You can use the programming interface to develop QTSS modules that supplement
the features of the QuickTime Streaming server. For example, you could write a
module that

�

acts as an RTSP proxy, which would be useful for streaming clients located
behind a firewall

18



 Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

�

supports virtual hosting, allowing a single server to serve multiple domains
from multiple document roots.

�

logs statistical information for particular RTSP and client sessions

�

supports additional ways of storing content, such as storing movies in databases

� configures users’ QuickTime Streaming Server preferences

� monitors and reports statistical information in real time

� tracks pay-per-view accounting information

Server Architecture

The Streaming Server consists of one parent process that forks a child process,
which is the core server. The parent process waits for the child process to exit. If the
child process exits with an error, the parent process forks a new child process.

The core server acts as an interface between network clients, which use RTP and
RTSP to send requests and receive responses, and server modules, which process
requests and send packets to the client. The core server does its work by creating
four types of threads:

� the server’s own Main thread. The Main thread checks to see if the server needs
to shut down, log status information, or print statistics.

� the Idle Task thread. The Idle Task thread manages a queue of tasks that occur
periodically. There are two types of task queues: timeout tasks and socket tasks.

� the Event thread. The Event thread listens for socket events such as a received
RTSP request or RTP packet and forwards them to a Task thread.

� one or more Task threads. Tasks threads receive RTSP and RTP requests from
the Event thread. Tasks threads foward requests to the appropriate server
module for processing and send packets to the client. By default, the core server
creates one Task thread per processor.

Figure 2-1 summarizes the relationship between clients, the core server’s threads,
and server modules.

C H A P T E R 2

Concepts

19
  Apple Computer, Inc. August 29, 2003

Figure 2-1 Server architecture

Because the server is largely asynchronous, there needs to be a communication
mechanism for events. For instance, when a socket used for an RTSP connection gets
data, something has to be notified so that data can be processed. The Task object is
a generalized mechanism for performing this communication.

Each Task object has two major methods: Signal and Run. Signal is called by the
server to send an event to a Task object. Run is called to give time to the Task for
processing the event.

The goal of each Task object is to implement server functionality using small
non-blocking time slices. Run is a pure virtual function that is called when a Task
object has events to process. Inside the Run function, the Task object can call
GetEvents to receive and automatically dequeue all its current and previously
signaled events. The Run function is never re-entered: if a Task object calls
GetEvents in its Run function, and is then signaled before the Run function
completes, the Run function will be called again for the new event only after exiting
the function. In fact, the Task’s Run function will be called repeatedly until the all
the Task object’s events have been cleared with GetEvents.

Send
packets

task

Process
Request

Task

Task
queue

Task
threads

Event
thread

Idle
task

Task
queue

Idle
Task

thread

Main
thread

Clients Core Server Modules

20
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

This core concept of event-triggered tasks is integrated into almost every Streaming
Server subsystem. For example, a Task object can be associated with a Socket object.
If the Socket gets an event (through a select() notification or through the Mac OS X
Event Queue, the corresponding Task object will be signaled. In this case, the body
of the Run function will contain the code for processing whatever event was
received on that Socket.

 Task objects make it possible for the Streaming Server use a singlethread to run all
connections, which is the Streaming Server’s default configuration on a single
processor system.

Modules
The Streaming Server uses modules to respond to requests and complete tasks.
There are three types of modules:

Content-Managing Modules

The content-managing modules manage RTSP requests and responses related to
media sources, such as a file or a broadcast. Each module is responsible for
interpreting the client’s request, reading and parsing their supported files or
network source, and responding with RTSP and RTP. In some cases, such as the
mp3 streaming module, the module uses HTTP.

The content-managing modules are QTSSFileModule, QTSSReflectorModule,
QTSSRelayModule, and QTSSMP3StreamingModule.

Server-Support Modules

The server-support modules perform server data gathering and logging functions.
The server-support modules are QTSSErrorLogModule, QTSSAccessLogModule,
QTSSWebStatsModule, QTSSWebDebugModule, QTSSAdminModule, and
QTSSPOSIXFileSystemModule.

Access Control Modules

The access control modules provide authentication and authorization functions as
well as URL path manipulation.

C H A P T E R 2

Concepts

21
  Apple Computer, Inc. August 29, 2003

The access control modules are QTSSAccessModule, QTSSHomeDirectoryModule,
QTSSHttpFileModule, and QTSSSpamDefenseModule.

Protocols
The Streaming Server supports the following protocols:

� RTSP over TCP. The Real Time Streaming Protocol (RTSP) is a client-server
multimedia presentation control protocol designed to provide efficient delivery
of streamed multimedia over IP networks. RTSP provides a basis for negotiating
unicast and multicast transport protocols, such as RTP, and negotiates codecs in
a file format independent way. It works well for large audiences as well as
single-viewer media-on-demand. RFC 2326 defines the IETF standard for RTSP.

� RTP over UDP. The Realtime Transport Protocol (RTP) is a packet format for
multimedia data streams. RTP is used by many standard protocols, such as
RTSP for streaming applications and SDP for multicast applications. It provides
the data delivery format for RTSP and SDP. RFC 1889 defines the IETF proposed
standard for RTP.

� RTP over Apple’s Reliable UDP. If an RTP client requests it, the server sends
RTP packets using Reliable UDP. Reliable UDP is a set of quality of service
enhancements, such as congestion control tuning improvements, retransmit,
and thinning server algorithms, that improve the ability to present a good
quality RTP stream to RTP clients even in the presence of packet loss and
network congestion. For more information, see “Reliable UDP” (page 149).

� RTSP/RTP in HTTP (tunneled). Firewalls often prevent users on private IP
networks from receiving QuickTime presentations. On private networks, an
HTTP proxy server is often configured to provide users with indirect access to
the Internet. To reach such clients, QuickTime 4.1 supports the placement of
RTSP and RTP data in HTTP requests and replies, allowing viewers behind
firewalls to access QuickTime presentations through HTTP proxy servers. For
more information, see “Tunneling RTSP and RTP Over HTTP” (page 152).

� RTP over RTSP (RTP over TCP). Certain firewall designs and other
circumstances may require a server to use alternative means to send data to
clients. RFC 2326 allows RTSP packets destined for the same control end point
to be packed into a single lower-layer protocol data unint (PDU), encapsulated
into a TCP stream, or interleaved with RTP and RTCP packets. Interleaving
complicates client and server operation and imposes additional overhead and
should only be used if RTSP is carried over TCP. RTP packets are encapsulated

22
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

by an ASCII dollar sign ($), followed by a one-byte channel identifier (defined in
the transport header using the interleaved parameter), followed by the length of
the encapsulated binary data as a binary, two-byte integer in network byte
order. The stream data follows immediately, without a CRLF, but including the
upper-layer protocol headers. Each $ block contains exactly one RTP packet.
When the transport is RTP, RTCP messages are also interleaved by the server
over the TCP connection. By default, RTCP packets are sent on the first available
channel higher than the RTP channel. The client may request RTCP packets on
another channel explicitly. This is done by specifying two channels in the
interleaved parameter of the transport header. RTCP is used for synchronization
when two or more streams are interleaved. Also, this provides a convenient way
to tunnel RTP/RTCP packets through the TCP control connection when
required by the network configuration and transfer them onto UDP when
possible.

In addition, the following modules implement HTTP:

� QTSSAdminModule

� QTSSMP3StreamingModule

� QTSSWebStatsModule

� QTSSHTTPStreamingModule

� QTSSRefMovieModule

� QTSSWebStats

� QTSSWebDebugModule

Data
When a module needs access to a request’s RTSP header, it gains access to the
request through a request object defined by the QTSS.h API header file. For
example, the RTSPRequestInterface class implements the API dictionary elements
accessible by the API. Objects whose name ends with “Interface”, such as
RTSPRequestInterface, RTSPSessionInterface, and QTSServerInterface, implement
the module’s API.

The following interface classes are significant:

C H A P T E R 2

Concepts

23
  Apple Computer, Inc. August 29, 2003

� QTSServerInterface — This is the internal data storage object tagged as the
QTSS_ServerObject in the API. Each of the QTSS_ServerAttributes in the API is
declared and implemented in this base class.

� RTSPSessionInterace — This is the internal data storage object tagged as the
qtssRTSPSessionObjectType in the API. Each of the
QTSS_RTSPSessionAttributes in the API is declared and implemented in this
base class.

� RTPSessionInterface — This is the internal data storage object tagged as the
QTSS_ClientSessionObject in the API. Each of the
QTSS_ClientSessionAttributes in the API is declared and implemented in this
base class.

� RTSPRequestInterface — This is the internal data storage object tagged as the
QTSS_RTSPRequestObject in the API. Each of the
QTSS_RTSPRequestAttributes in the API is declared and implemented in this
base class.

Classes
Figure 2-2 shows how the objects in the server reference each other.

24
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Figure 2-2 Server object data model

The server object has a a dictionary of preferences. The server owns a list of modules
each with a dictionary for their preferences. The server owns a list of RTP client
sessions, each of which can have an RTSP session and one or more RTP media
streams. It is possible to use the API to walk all of the server’s the live sessions and
streams.

� QTServer is the core server object, some of which is accessible through the API
and the QTSServerInterface base class.

� Dictionary is a data storage base class that implements key and value access to
object data. This base class is inherited by all server objects defined by the API.

� Module is a class for managing modules. Each module instance is responsible
for loading, initializing, and executing a static or dynamic API module.

� RTSP and RTP sessions. Reads and writes are managed by the sessions through
a stream object. The RTSP session calls each of the modules in their registered
RTSP role fromthe session’s RTSPSession::Run method. The API module roles
that are called are QTSS_RTSPFilter_Role, QTSS_RTSPRoute_Role,
QTSS_RTSPAuthenticate_Role, QTSS_RTSPAuthorize_Role,
QTSS_RTSPPreProcessor_Role, QTSS_RTSPRequest_Role,
QTSS_RTSPPostProcessor_Role, and QTSS_RTSPSessionClosingRole. The RTSP
session also calls modules in their QTSS_RTSPIncomingData_Role. The RTP session
handles the following role calls as well as data reads and writes:

RTP
streams

RTSP
session

Module
preferences

Client
sessionsModulesServer

preferences

Server

C H A P T E R 2

Concepts

25
  Apple Computer, Inc. August 29, 2003

QTSS_RTPSendPackets_Role, QTSS_RTCPProcess_Role, and
QTSS_ClientSessionClosing_Role. For more information about roles, see
“Module Roles” (page 40).

Applications and Tools
The Streaming Server comes with the following applications and tools:

� PlayListBroadcaster

� MP3Broadcaster

� StreamingProxy (POSIX and Mac OS X only)

� QTFileTools (POSIX and Mac OS X only; not maintained). The tools consist of

� WebAdmin

� qtpasswd

PlayListBroadcaster

The PlayListBroadcaster application plays back QuickTime Broadcaster recorded
movies.

MP3Broadcaster

The MP3Broadcaster application broadcasts an MP3 file as if it were a live
broadcast.

StreamingProxy

POSIX and Mac OS X only.

QTFileTools

QTFileTools are movie-inspection utilities that use the QTFile library. The utillities
are:

� QTBroadcaster. This utility requires a target IP address, a source movie having
one or more hint track IDs, and an initial port. Every packet referenced by the
hint track(s) is broadcast to the specified IP address.

26
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

� QTFileInfo. This utility requires a source movie. It displays the movie’s name,
creation date, and modification date. If the track is a hint track, the utility also
displays the total RTP bytes and packets, the average bit rate and packet size,
and the total header percentage of the stream.

� QTFileTest. This utility requires a source movie. It parses the Movie Header
Atom and displays a trace of the output.

� QTRTPGent. This utility requires a source movie having a hint track ID. It
displays the number of packets in each hint track sample and writes the RTP
packets to a file named track.cache.

� QTRTPFileTest. This utility requires a source movie having a hint track ID. It
displays the RTP header (TransmitTime, Cookie, SeqNum, and TimeStamp) for
each packet.

� QTSampleLister. This utility requires a source movie and a track ID. It displays
the track media sample number, media time, data offset, and sample size for
each sample in the track.

� QTSDPGen. This utility requires a list of one or more source movies. It displays
the SDP information for all of the hinted tracks in each movie. Use the -f option
to save the SDP information to the file moviename.sdp in the same directory as
the source movie.

� QTTrackInfo. This utility requires a source movie, a sample table atom type
(stco, stsc, stsz, or stts) and a track ID. It displays the information in the
sample table atom of the specified track.

The following example displays the chunk offset sample table in track 3:

./QTTrackInfo -T stco /movies/mystery/.mov 3

WebAdmin

WebAdmin is a Perl-based web server. Connect a browser to it, and you can
administer the server.

qtpasswd

The qtpasswd application generates password files for access control.

C H A P T E R 2

Concepts

27
  Apple Computer, Inc. August 29, 2003

Source Organization
The Streaming Server source code is written entirely in C++ and pervasively uses
object-oriented concepts such as inheritance and polymorphism. Almost
exclusively, there is one C++ class per .h / .cpp file pair, and those file names match
the class name.

The Streaming Server source is organized as follows:

� “Server.tproj” (page 27)

� “CommonUtilitiesLib” (page 28)

� “QTFileLib” (page 28)

� “APICommonCode” (page 29)

� “APIModules” (page 29)

� “RTSPClientLib” (page 29)

� “RTCPUtilitiesLib” (page 29)

� “APIStubLib” (page 29)

� “HTTPUtilitiesLib” (page 29)

Server.tproj

This directory contains the core server code, which can be divided into three
subsystems:

� Server core. Classes in this subsystem are prefixed by QTSS. QTSServer handles
startup and shutdown. QTSServerInterface stores server globals and compiles
server statistics. QTSSPrefs is a data store for server preferences. QTSSModule,
QTSSModuleInterface, and QTSSCallbacks are classes whose sole purpose is to
support the QTSS module API.

� RTSP subsystem. These classes handle the parsing and processing of RTSP
requests, and implement the RTSP part of the QTSS module API. Several of the
classes correspond directly to elements of the QTSS API (for instance,
RTSPRequestInterface is a QTSS_RTSPRequestObject). There is one RTSP
session object per RTSP TCP connection. The RTSPSession object is a Task object
that processes RTSP related events.

28
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

� RTP subsystem. These classes handle the sending of media data. The
RTPSession object contains the data associated with each RTSP session ID. Each
RTPSession is a Task object that can be scheduled to send RTP packets. The
RTPStream object represents a single RTP stream. Any number of RTPStream
objects can be associated with a single RTPSession. These two objects implement
the RTP specific parts of the QTSS module API.

CommonUtilitiesLib

This directory contains a toolkit of thread management, data structure, networking,
and text parsing utilities. Darwin Streaming Server and associated tools use these
classes to reduce repeated code by abstracting similar or identical tasks, to simplify
higher level code through encapsulation, and to separate out platform-specific
code. Here is a short description of the classes in the CommonUtilitiesLib directory:

� OS Classes. These classes provide platform-specific code abstractions for timing,
condition variables, mutexes, and threads. The classes are OS, OSCond,
OSMutex, OSThread, and OSFileSource. The data structures are OSQueue,
OSHashTable, OSHeap, and OSRef.

� Sockets. These classes provide platform-specific code abstractions for TCP and
UDP networking. Socket classes are generally asynchronous (or non-blocking),
and can send events to Task objects. The classes are EventContext, Socket,
UDPSocket, UDPDemuxer, UDPSocketPool, TCPSocket, and
TCPListenerSocket.

� Parsing Utilities. These classes parse and format text. The classes are
StringParser, StringFormatter, StrPtrLen, and StringTranslator.

� Tasks: These classes implement the server’s asynchronous event mechanism.

QTFileLib

A major feature of the Streaming Server is its ability to serve hinted QuickTime
movie files over RTSP and RTP. This directory contains source code for the QTFile
library, which contains all of the code for parsing hinted QuickTime files. The
server’s RTPFileModule calls the QTFile library to retrieve packets and meta-data
from hinted QuickTime files. The QTFile library parses the following movie file
types: .mov, .mp4 (a modification of .mov), and .3gpp (a modification of .mov).

C H A P T E R 2

Concepts

29
  Apple Computer, Inc. August 29, 2003

APICommonCode

This directory contains source code for API-related classes, such as moduletils, or
common module functions, such as log file management.

APIModules

This directory contains a directory for each Streaming Server module.

RTSPClientLib

This directory contains source code that implements the server’s RTSP client, which
can be used to connect to the server using any of the supported protocols.

RTCPUtilitiesLib

This directory contains source code for parsing RTCP requests.

APIStubLib

This directory contains API definition and support files.

HTTPUtilitiesLib

This directory contains source code for parsing HTTP requests.

Requirements for Modules

Every QTSS module must implement two routines:

� a main routine, which the server calls when it starts up to initialize the QTSS stub
library with your module

� a dispatch routine, which the server uses when it calls the module for a specific
purpose

30
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Main Routine
Every QTSS modules must provide a main routine. The server calls the main routine
as the server starts up and uses it to initialize the QTSS stub library so the server can
invoke your module later.

For modules that are compiled into the server, the address of the module's main
routine must be passed to the server's module initialization routine, as described in
the section “Compiling a QTSS Module into the Server”.

The body of the main routine must be written like this:

QTSS_Error MyModule_Main(void* inPrivateArgs)

{

 return _stublibrary_main(inPrivateArgs, MyModuleDispatch);

}

where MyModuleDispatch is the name of the module’s dispatch routine, which is
described in the following section, “Dispatch Routine” (page 30).

Important
For code fragment modules, the main
routine must be named MyModule_Main
where MyModule is the name of the file that
contains the module.

Dispatch Routine
Every QTSS module must provide a dispatch routine. The server calls the dispatch
routine when it invokes a module for a specific task, passing to the dispatch routine
the name of the task and a task-specific parameter block. (The programming
interface uses the term “role” to describe specific tasks. For information about roles,
see “Module Roles” (page 40).)

The dispatch routine must have the following prototype:

void MyModuleDispatch(QTSS_Role inRole, QTSS_RoleParamPtr inParams);

where MyModuleDispatch is the name specified as the name of the dispatch routine
by the module’s main routine, inRole is the name of the role for which the module
is being called, and inParams is a structure containing values of interest to the
module.

C H A P T E R 2

Concepts

31
  Apple Computer, Inc. August 29, 2003

Overview of QuickTime Streaming Server Operations

The QuickTime Streaming Server works with modules to process requests from
clients by invoking modules in a particular role. Each role is designed to perform a
particular task. This section describes how the server works with roles when it starts
up and shuts down and how the server works with roles when it processes client
requests.

Server Startup and Shutdown
Figure 2-1 shows how the server works with the Register, Initialize, and Shutdown
roles when the server starts up and shuts down.

32
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Figure 2-3 QuickTime Streaming Server startup and shutdown

When the server starts up, it first loads modules that are not compiled into the
server (dynamic modules) and then loads modules that are compiled into the server
(static modules). If you are writing a module that replaces existing server
functionality, compile it as a dynamic module so that it is loaded first.

Then the server invokes each QTSS module in the Register role, which is a role that
every module must support. In the Register role, the module calls QTSS_AddRole to
specify the other roles that the module supports.

Next, the server invokes the Initialize role for each module that has registered for
that role. The Initialize role performs any initialization tasks that the module
requires, such as allocating memory and initializing global data structures.

Server starts up

Server loads dynamic modules

Server loads static modules

Server shuts down

Server calls modules in Shutdown role

Server quits

Server calls modules in Register role

Server calls modules in Initialize role

Server processes RTSP requests

Startup Shutdown

C H A P T E R 2

Concepts

33
  Apple Computer, Inc. August 29, 2003

At shutdown, the server invokes the Shutdown role for each module that has
registered for that role. When handling the Shutdown role, the module should
perform cleanup tasks and free global data structures.

RTSP Request Processing
After the server calls each module that has registered for the Initialize role, the
server is ready to receive requests from the client. These requests are known as
RTSP requests. A sample RTSP request is shown in Figure 2-2.

Figure 2-4 Sample RTSP request

When the server receives an RTSP request, it creates an RTSP request object, which
is a collection of attributes that describe the request. At this point, the
qtssRTSPReqFullRequest attribute is the only attribute that has a value and that
value consists of the complete contents of the RTSP request.

Next, the server calls modules in specific roles according to a predetermined
sequence. That sequence is shown in Figure 2-5 (page 34).

Note: The order in which the server calls any particular
module for any particular role is undetermined.

DESCRIBE rtsp://streaming.site.com/foo.mov RTSP/1.0
CSeq: 1
Accept: application/sdp
User-agent: QTS/1.0

34
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Figure 2-5 Summary of RTSP request processing

Server receives an RTSP request

Done

Server calls modules registered
for RTSP Filter role

Server calls modules registered
for RTSP Route role

Server calls modules registered
for RTSP Preprocessor role

Server calls module registered
for RTSP Request role

Server calls modules registered
for RTSP Postprocessor role

Server parses the request

Yes

No

No
Did a module
respond to the

client?

Yes

Did a module
respond to the

client?

Yes

No

Did a module
respond to the

client?

C H A P T E R 2

Concepts

35
  Apple Computer, Inc. August 29, 2003

When processing an RTSP request, the first role that the server calls is the RTSP
Filter role. The server calls each module that has registered for the RTSP Filter role
and passes to it the RTSP request object. Each module’s RTSP Filter role has the
option of changing the value of the qtssRTSPReqFullRequest attribute. For example,
an RTSP Filter role might change /foo/foo.mov to /bar/bar.mov, thereby changing
the folder that will be used to satisfy this request.

Important
Any module handling the RTSP Filter role
that responds to the client causes the
server to skip other modules that have
registered for the RTSP Filter role, skip
modules that have registered for other
RTSP roles, and immediately call the
RTSP Postprocessor role of the
responding module. A response to a client
is defined as any data the module may
send to the client.

When all RTSP Filter roles have been invoked, the server parses the request. Parsing
the request consists of filling in the remaining attributes of the RTSP object and
creating two sessions:

� an RTSP session, which is associated with this particular request and closes
when the client closes its RTSP connection to the server

� a client session, which is associated with the client connection that originated the
request and remains in place until the client’s streaming presentation is
complete

After parsing the request, the server calls the RTSP Route role for each module that
has registered in that role and passes the RTSP object. Each RTSP Route role has the
option of using the values of certain attributes to determine whether to change the
value of the qtssRTSPReqRootDir attribute, thereby changing the folder that is used
to process this request. For example, if the language type is French, the module
could change the qtssRTSPReqRootDir attribute to a folder that contains the French
version of the requested file.

Important
Any module handling the RTSP Route
role that responds to the client causes the
server to skip other modules that have
registered for the RTSP Route role, skip

36
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

modules that have registered for other
RTSP roles, and immediately calls the
RTSP Postprocessor role of the
responding module.

After all RTSP Route roles have been called, the server calls the RTSP Preprocessor
role for each module that has registered for that role. The RTSP Preprocessor role
typically uses the qtssRTSPReqAbsoluteURL attribute to determine whether the
request matches the type of request that the module handles.

If the request matches, the RTSP Preprocessor role responds to the request by
calling QTSS_Write or QTSS_WriteV to send data to the client. To send a standard
response, the module can call QTSS_SendStandardRTSPResponse, or
QTSS_AppendRTSPHeader and QTSS_SendRTSPHeaders.

Important
Any module handling the RTSP
Preprocessor role that responds to the
client causes the server to skip other
modules that have registered for the RTSP
Preprocessor role, skip modules that have
registered for other RTSP roles, and
immediately calls the RTSP Postprocessor
role of the responding module.

If no RTSP Preprocessor role responds to the RTSP request, the server invokes the
RTSP Request role of the module that successfully registered for this role. (The first
module that registers for the RTSP Request role is the only module that can register
for the RTSP Request role.) The RTSP Request role is responsible for responding to
all RTSP Requests that are not handled by modules registered for the RTSP
Preprocessor role.

After the RTSP Request role processes the request, the server calls modules that
have registered for the RTSP Postprocessor role. The RTSP Postprocessor role
typically performs accounting tasks, such as logging statistical information.

A module handling the RTSP Preprocessor or RTSP Request role may generate the
media data for a particular client session. To generate media data, the module calls
QTSS_Play, which causes that module to be invoked in the RTP Send Packets role, as
shown in Figure 2-6 (page 37).

C H A P T E R 2

Concepts

37
  Apple Computer, Inc. August 29, 2003

Figure 2-6 Summary of the RTSP Preprocessor and RTSP Request roles

The RTP Send Packets role calls QTSS_Write or QTSS_WriteV to send data to the client
over the RTP session. When the RTP Send Packets role has sent some packets, it
returns to the server and specifies the time that is to elapse before the server calls
the module’s RTP Send Packets role again. This cycle repeats until all of the packets
for the media have been sent or until the client requests that the client session be
paused or torn down.

Done

Yes

NoAre there
more packets

to send?

Module calls
server's QTSS_Play routine

Server calls RTP Send
Packets role for the module

that called QTSS_Play

RTP Send Packets role
sends packets to client

Server calls RTP Send
Packets role again

Return to server asking
to be called again

38
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Runtime Environment for QTSS Modules

QTSS modules can spawn threads, use mutexes, and are completely free to use any
operating system tools.

The QuickTime Streaming Server is fully multi-threaded, so QTSS modules must be
prepared to be preempted. Global data structures and critical sections in code
should be protected with mutexes. Unless otherwise noted, assume that
preemption can occur at any time.

The server usually runs all activity from very few threads or possibly a single
thread, which requires the server to use asynchronous I/O whenever possible. (The
actual behavior depends on the platform and how the administrator configures the
server.)

QTSS modules should adhere to the following rules:

� Perform tasks and return control to the server as quickly as possible. Returning
quickly allows the server to load balance among a large number of clients.

� Be prepared for QTSS_WouldBlock errors when performing stream I/O. The
QTSS_Write, QTSS_WriteV, and QTSS_Read callback routines return
QTSS_WouldBlock if the requested I/O would block. For more information about
streams, see “QTSS Streams” (page 116).

� Avoid using synchronous I/O wherever possible. An I/O operation that blocks
may affect streaming quality for other clients.

Server Time
The QuickTime Streaming Server handles real-time delivery of media, so many
elements of QTSS module programming interface are time values.

The server’s internal clock counts the number of milliseconds that have elapsed
since midnight, January 1st, 1970. The data type QTSS_TimeVal is used to store the
value of the server’s internal clock. To make it easy to work with time values, every
attribute, parameter, and callback routine that deals with time specifies the time
units explicitly. For example, the qtssRTPStrBufferDelayInSecs attribute specifies

C H A P T E R 2

Concepts

39
  Apple Computer, Inc. August 29, 2003

the client’s buffer size in seconds. Unless otherwise noted, all time values are
reported in milliseconds from the server’s internal clock using a QTSS_TimeVal data
type.

To get the current value of the server’s clock, call QTSS_Milliseconds or get the value
of the qtssSvrCurrentTimeMilliseconds attribute of the server object
(QTSS_ServerObject). To convert a time obtained from the server’s clock to the
current time, call QTSS_MilliSecsTo1970Secs.

Naming Conventions

The QTSS programming interface uses a naming convention for the data types that
it defines. The convention is to use the size of the data type in the name. Here are
the data types that the QTSS programming interface uses:

� Bool16 — A 16-bit Boolean value

� SInt64 — A signed 64-bit integer value

� SInt32 — A signed 32-bit integer value

� UInt16 — An unsigned 16-bit integer value

� UInt32 — An unsigned 32-bit integer value

Parameters for callback functions defined by the QTSS programming interface
follow these naming conventions:

� Input parameters begin with in.

� Output parameters begin with out.

� Parameters that are used for both input and output begin with io.

40
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Module Roles

Roles provide modules with a well-defined state for performing certain types of
processing. A selector of type QTSS_Role defines each role and represents the
internal processing state of the server and the number, accessibility, and validity of
server data. Depending on the role, the server may pass to the module one or more
QTSS objects. In general, the server uses objects to exchange information with
modules. For more information about QTSS objects, see “QTSS Objects” (page 56).

Table 2-1 lists the roles that this version of the QuickTime Streaming Server
supports.

Table 2-1 Module roles

Name Constant Task

Register role QTSS_Register_Role Registers the roles the module
supports.

Initialize role QTSS_Initialize_Role Performs tasks that initialize the
module.

Shutdown role QTSS_Shutdown_Role Performs cleanup tasks.

Reread Preferences
role

QTSS_RereadPrefs_Role Rereads the modules’s preferences.

Error Log role QTSS_ErrorLog_Role Logs errors.

RTSP Filter role QTSS_RTSPFilter_Role Makes changes to the contents of
RTSP requests.

RTSP Route role QTSS_RTSPRoute_Role Routes requests from the client to
the appropriate folder.

RTSP Preprocessor
role

QTSS_RTSPPreProcessor_Role Processes requests from the client
before the server processes them.

C H A P T E R 2

Concepts

41
  Apple Computer, Inc. August 29, 2003

With the exception of the Register, Shutdown, and Reread Preferences roles, when
the server invokes a module for a role, the server passes to the module a structure
specific to that particular role. The structure contains information that the modules
uses in the execution of that role or provides a way for the module to return
information to the server.

RTSP Request role QTSS_RTSPRequest_Role Processes a request from the client
if no other role responds to the
request.

RTSP Postprocessor
role

QTSS_RTSPPostProcessor_Rol
e

Performs tasks, such as logging
statistical information, after a
request has been responded to.

RTP Send Packets role QTSS_RTPSendPackets_Role Sends packets.

Client Session Closing
role

QTSS_ClientSessionClosing_
Role

Performs tasks when a client
session closes.

RTCP Process role QTSS_RTCPProcess_Role Processes RTCP receiver reports.

Open File Preprocess
role

QTSS_OpenFilePreProcess_Ro
le

Processes requests to open files.

Open File role QTSS_OpenFile_Role Processes requests to open files
that are not handled by the Open
File Preprocess role.

Advise File role QTSS_AdviseFile_Role Responds when a module (or the
server) calls the QTSS_Advise
callback for a file object.

Read File role QTSS_ReadFile_Role Reads a file.

Request Event File role QTSS_RequestEventFile_Role Handles requests for notification of
when a file becomes available for
reading.

Close File role QTSS_CloseFile_Role Closes a file that was previously
opened.

Table 2-1 Module roles (continued)

Name Constant Task

42
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

The RTSP roles have the option of responding to the client. A response is defined as
any data that a module sends to a client. Modules can send data to the client in a
variety of ways. They can, for example, call QTSS_Write or QTSS_WriteV.

Note: The order in which modules are called for any particular
role is undetermined.

Register Role
Modules use the Register role to call QTSS_AddRole to tell the server the roles they
support.

Modules also use the Register role to call QTSS_AddService to register services and to
call QTSS_AddStaticAttribute to add static attributes to QTSS object types. (QTSS
objects are collections of attributes, each having a value.)

The server calls a module’s Register role once at startup. The Register role is always
the first role that the server calls.

A module that returns any value other than QTSS_NoErr from its Register role is not
loaded into the server.

Initialize Role
The server calls the Initialize role of those modules that have registered for this role
after it calls the Register role for all modules. Modules use the Initialize role to
initialize global and private data structures.

The server passes to each module’s Initialize role objects that can be used to obtain
the server’s global attributes, preferences, and text error messages. The server also
passes the error log stream reference, which can be used to write to the error log. All
of these objects are globals, so they are valid for the duration of this run of the server
and may be accessed at any time.

When called in the Initialize role, the module receives a QTSS_Initialize_Params
structure which is defined as follows:

typedef struct

{

QTSS_ServerObject inServer;

QTSS_PrefsObject inPrefs;

C H A P T E R 2

Concepts

43
  Apple Computer, Inc. August 29, 2003

QTSS_TextMessagesObjectinMessages;

QTSS_ErrorLogStream inErrorLogStream;

QTSS_ModuleObject inModule;

} QTSS_Initialize_Params;

inServer

A QTSS_ServerObject object containing the server’s global attributes
and an attribute that contains information about all of the modules
in the running server. For a description of each attribute, see the
section “qtssServerObjectType” (page 106).

inPrefs

A QTSS_PrefsObject object containing the server’s preferences. For a
description of each attribute, see the section “qtssPrefsObjectType”
(page 79).

inMessages

A QTSS_TextMessagesObject object that a module can use for
providing localized text strings. See the section
“qtssTextMessageObjectType” (page 111).

inErrorLogStream

A QTSS_ErrorLogStream stream reference that a module can use to
write to the server’s error log. Writing to this stream causes the
module to be invoked in its Error Log role.

inModule

A QTSS_ModuleObject object that a module can use to store
information about itself, including its name, version number, and a
description of what the module does. See the section
“qttsModuleObjectType” (page 64).

A module that wants to be called in the Initialize role must in its Register role call
QTSS_AddRole and specify QTSS_Initialize_Role as the role.

A module that returns any value other than QTSS_NoErr from its Initialize role is not
loaded into the server.

Shutdown Role
The server calls the Shutdown role of those modules that have registered for this
role when the server is getting ready to shut down.

44
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

The server calls a module’s Shutdown role without passing any parameters.

The module uses its Shutdown role to delete all data structures it has created and to
perform any other cleanup task

A module that wants to be called in the Shutdown role must in its Register role call
QTSS_AddRole and specify QTSS_Shutdown_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

The server guarantees that the Shutdown role is the last time that the module is
called before the server shuts down.

Reread Preferences Role
The server calls the Reread Preferences role of those modules that have registered
for this role and rereads its own preferences when the server receives a SIGHUP signal
or when a module calls the Reread Preferences service described in the section
“QTSS Services” (page 119).

When called in this role, the module should reread its preferences, which may be
stored in a file or in a QTSS object.

A module that wants to be called in the Reread Preferences role must in its Register
role call QTSS_AddRole and specify QTSS_RereadPrefs_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Error Log Role
The server calls the Error Log role of those modules that have registered for this role
when an error occurs. The module should process the error message by, for
example, writing the message to a log file.

When called in the Error Log role, the module receives a QTSS_ErrorLog_Params
structure, which is defined as follows:

C H A P T E R 2

Concepts

45
  Apple Computer, Inc. August 29, 2003

typedef struct

{

QTSS_ErrorVerbosity inVerbosity;

char * inBuffer;

} QTSS_ErrorLog_Params;

inVerbosity

Specifies the verbosity level of this error message. Modules should
use the inFlags parameter of QTSS_Write to specify the verbosity
level. The following constants are defined:
qtssFatalVerbosity = 0,

qtssWarningVerbosity = 1,

qtssMessageVerbosity = 2,

qtssAssertVerbosity = 3,

qtssDebugVerbosity = 4,

inBuffer

Points to a null-terminated string containing the error message.
Writing an error message at the level qtssFatalVerbosity causes the server to shut
down immediately.

Writing to the error log cannot result in an QTSS_WouldBlock error.

A module that wants to be called in the Error Log role must in its Register role call
QTSS_AddRole and specify QTSS_ErrorLog_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Roles
When the server receives an RTSP request, it goes through a series of steps to
process the request and ensure that a response is sent to the client. The steps consist
of calling certain roles in a predetermined order. This section describes each role in
detail. For an overview of roles and the sequence in which they are called, see the
section “Overview of QuickTime Streaming Server Operations” (page 31).

Note: All RTSP roles have the option of responding directly to
the client. When any RTSP role responds to a client, the server
immediately skips the RTSP roles that it would normally call
and calls the RTSP Postprocessor role of the module that
responded to the RTSP request.

46
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

RTSP Filter Role

The server calls the RTSP Filter role of those modules that have registered for the
RTSP Filter role immediately upon receipt of an RTSP request. Processing the Filter
role gives the module an opportunity to respond to the request or to change the
RTSP request.

When called in the RTSP Filter role, the module receives a
QTSS_StandardRTSP_Params structure, which is defined as follows:

typedef struct

{

QTSS_RTSPSessionObject inRTSPSession;

QTSS_RTSPRequestObject inRTSPRequest;

char** outNewRequest;

} QTSS_StandardRTSP_Params;

inRTSPSession

The QTSS_RTSPSessionObject object for this RTSP session. See the
section “qtssRTSPSessionObjectType” (page 104) for information
about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject object for this RTSP request. When
called in the RTSP Filter role, only the qtssRTSPReqFullRequest
attribute has a value. See the section “qtssRTSPRequestObjectType”
(page 100) for information about RTSP request object attributes.

outNewRequest
A pointer to a location in memory.

The module calls QTSS_GetValuePtr to get from the qtssRTSPReqFullRequest
attribute the complete RTSP request that caused the server to call this role. The
qtssRTSPReqFullRequest attribute is a read-only attribute. To change the RTSP
request, the module should call QTSS_New to allocate a buffer, write the modified
request into that buffer, and return a pointer to that buffer in the outNewRequest field
of the QTSS_StandardRTSP_Params structure.

While a module is handling the RTSP Filter role, the server guarantees that the
module will not be called for any other role referencing the RTSP session
represented by inRTSPSession.

C H A P T E R 2

Concepts

47
  Apple Computer, Inc. August 29, 2003

If module handling the RTSP Filter role responds directly to the client, the server
next calls the responding module in the RTSP Postprocessor role. For information
about that role, see the section “RTSP Postprocessor Role” (page 51).

A module that wants to be called in the RTSP Filter role must in its Register role call
QTSS_AddRole and specify QTSS_RTSPFilter_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Route Role

The server calls the RTSP Route role after the server has called all modules that have
registered for the RTSP Filter role. It is the responsibility of a module handling this
role to set the appropriate root directory for each RTSP request by changing the
qtssRTSPReqRootDir attribute for the request.

When called, an RTSP Route role receives a QTSS_StandardRTSP_Params structure,
which is defined as follows:

typedef struct

{

QTSS_RTSPSessionObject inRTSPSession;

QTSS_RTSPRequestObject inRTSPRequest;

QTSS_RTSPHeaderObject inRTSPHeaders;

QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

inRTSPSession

The QTSS_RTSPSessionObject object for this RTSP session. See the
section “qtssRTSPSessionObjectType” (page 104) for information
about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject object for this RTSP request. In the
Route role and all subsequent RTSP roles, all of the attributes are
filled in. See the section “qtssRTSPRequestObjectType” (page 100)
for information about RTSP request object attributes.

inRTSPHeaders

The QTSS_RTSPHeaderObject object for the RTSP headers. See the
section “qtssRTSPHeaderObjectType” (page 99) for information
about RTSP header object attributes.

48
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

inClientSession

The QTSS_ClientSessionObject object for the client session. See the
section “qtssClientSessionObjectType” (page 57) for information
about client session object attributes.

Before calling modules in the RTSP Route role, the server parses the request.
Parsing the request consists of filling in all of the attributes of the
QTSS_RTSPSessionObject and QTSS_RTSPRequestObject members of the
QTSS_StandardRTSP_Params structure.

A module processing the RTSP Route role has the option of changing the
qtssRTSPReqRootDir attribute of the QTSS_RTSPRequestObject member of the
QTSS_StandardRTSP_Params structure. Changing the qtssRTSPReqRootDir attribute
changes the root folder for this RTSP request.

While a module is handling the RTSP Route role, the server guarantees that the
module will not be called for any other role referencing the RTSP session
represented by inRTSPSession.

If a module that is processing the RTSP Route role responds directly to the client,
the server immediately skips the processing of any other roles and calls the
responding module’s RTSP Postprocessor role. For information about that role, see
the section “RTSP Postprocessor Role” (page 51).

A module that wants to be called in the RTSP Route role must in its Register role call
QTSS_AddRole and specify QTSS_RTSPRoute_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Preprocessor Role

The server calls the RTSP Preprocessor role after the server has called all modules
that have registered for the RTSP Route role. If the module handles the type of RTSP
request for which the module is called, it is the responsibility of a module handling
this role to send a proper RTSP response to the client.

When called, an RTSP Preprocessor role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

typedef struct

{

QTSS_RTSPSessionObject inRTSPSession;

QTSS_RTSPRequestObject inRTSPRequest;

C H A P T E R 2

Concepts

49
  Apple Computer, Inc. August 29, 2003

QTSS_RTSPHeaderObject inRTSPHeaders;

QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

inRTSPSession

The QTSS_RTSPSessionObject object for this RTSP session. See the
section “qtssRTSPSessionObjectType” (page 104) for information
about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject object for this RTSP request with a
value for each attribute. See the section
“qtssRTSPRequestObjectType” (page 100) for information about
RTSP request object attributes.

inRTSPHeaders

The QTSS_RTSPHeaderObject object for the RTSP headers. See the
section “qtssRTSPHeaderObjectType” (page 99) for information
about RTSP header object attributes.

inClientSession

The QTSS_ClientSessionObject object for the client session. See the
section “qtssClientSessionObjectType” (page 57) for information
about client session object attributes.

The RTSP Preprocessor role typically uses the qtssRTSPReqFilePath attribute of the
inRTSPRequest member of the QTSS_StandardRTSP_Params structure to determine
whether the request matches the type of request that the module handles. For
example, a module may only handle URLs that end in .mov or .sdp.

If the request matches, the module handling the RTSP Preprocessor role responds
to the request by calling QTSS_SendStandardRTSPResponse, QTSS_Write, or
QTSS_WriteV, or by calling QTSS_AppendRTSPHeader, and QTSS_SendRTSPHeaders. If this
module is also responsible for generating RTP packets for this client session, it
should call QTSS_AddRTPStream (page 238) to add streams to the client session, and
QTSS_Play, which causes the server to invoke the RTP Send Packets role of the
module whose RTSP Preprocessor role calls QTSS_Play.

While a module is handling the RTSP Preprocessor role, the server guarantees that
the module will not be called for any other role referencing the RTSP session
specified by inRTSPSession or the client session specified by inClientSession.

A module that wants to be called in the RTSP Preprocessor role must in its Register
role call QTSS_AddRole and specify QTSS_RTSPPreProcessor_Role as the role.

50
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Request Role

The server calls the RTSP Request role if no RTSP Preprocessor role responds to an
RTSP request. Only one module is called in the RTSP Request role, and that is the
first module to register for the RTSP Request role when the server starts up.

When called, the RTSP Request role receives a QTSS_StandardRTSP_Params structure,
which is defined as follows:

typedef struct

{

QTSS_RTSPSessionObject inRTSPSession;

QTSS_RTSPRequestObject inRTSPRequest;

QTSS_RTSPHeaderObject inRTSPHeaders;

QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

inRTSPSession

The QTSS_RTSPSessionObject object for this RTSP session. See the
section “qtssRTSPSessionObjectType” (page 104) for information
about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject object for this RTSP request with a
value for each attribute. See the
section“qtssRTSPRequestObjectType” (page 100) for information
about RTSP request object attributes.

inRTSPHeaders

The QTSS_RTSPHeaderObject object for the RTSP headers. See the
section “qtssRTSPHeaderObjectType” (page 99) for information
about RTSP header object attributes.

inClientSession

The QTSS_ClientSessionObject object for the client session. See the
section “qtssClientSessionObjectType” (page 57) for information
about client session object attributes.

C H A P T E R 2

Concepts

51
  Apple Computer, Inc. August 29, 2003

Like a module processing the RTSP Preprocessor role, a module that processes the
RTSP Request Role should use an attribute, such as the qtssRTSPReqFilePath
attribute of the inRTSPRequest member of the QTSS_StandardRTSP_Params structure,
to determine whether the request matches the type of request that the module can
handle.

A module handling the RTSP Request role should respond to the request by

� Sending an RTSP response to the client by calling QTSS_AppendRTSPHeader and
QTSS_SendRTSPHeaders, by calling QTSS_SendStandardRTSPResponse, or by calling
QTSS_Write or QTSS_WriteV.

� Preparing the QTSS_ClientSessionObject for streaming by using the RTP
callbacks, such as QTSS_AddRTPStream and QTSS_Play. If QTSS_Play is called, the
server will invoke the calling module in the RTP Send Packets role, at which
time the module will be expected to generate RTP packets to send to the client.

A module that wants to be called in the RTSP Request role must in its Register role
call QTSS_AddRole and specify QTSS_RTSPRequest_Role as the role. The first module
that successfully calls QTSS_AddRole and specifies QTSS_RTSPRequest_Role as the role
is the only module that is called in the RTSP Request role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Postprocessor Role

The server calls a module’s RTSP Postprocessor role whenever the module
responds to an RTSP request if that module has registered for this role.

Modules can use the RTSP Postprocessor role to log statistical information.

When called, the RTSP Postprocessor role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

typedef struct

{

QTSS_RTSPSessionObject inRTSPSession;

QTSS_RTSPRequestObject inRTSPRequest;

QTSS_RTSPHeaderObject inRTSPHeaders;

QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

52
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

inRTSPSession

The QTSS_RTSPSessionObject object for this RTSP session. See the
section “qtssRTSPSessionObjectType” (page 104) for information
about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject object for this RTSP request with a
value for each attribute. See the section
“qtssRTSPRequestObjectType” (page 100) for information about
RTSP request object attributes.

inRTSPHeaders

The QTSS_RTSPHeaderObject object for the RTSP headers. See the
section “qtssRTSPHeaderObjectType” (page 99) for information
about RTSP header object attributes.

inClientSession

The QTSS_ClientSessionObject object for the client session. See the
section “qtssClientSessionObjectType” (page 57) for information
about client session object attributes.

While a module is handling the RTSP Postprocessor role, the server guarantees that
the module will not be called for any role referencing the RTSP session specified by
inRTSPSession or the client session specified by inClientSession.

A module that wants to be called in the RTSP Postprocessor role must in its Register
role call QTSS_AddRole and specify QTSS_RTSPPostProcessor_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTP Roles
This section describes RTP roles, which are used to send data to clients and to
handle the closing of client sessions.

RTP Send Packets Role

The server calls a module’s RTP Send Packets role when the module calls QTSS_Play.
It is the responsibility of the RTP Send Packets role to send media data to the client
and tell the server when the module’s RTP Send Packets role should be called again.

When called, the RTP Send Packets role receives a QTSS_RTPSendPackets_Params
structure, which is defined as follows:

C H A P T E R 2

Concepts

53
  Apple Computer, Inc. August 29, 2003

typedef struct

{

QTSS_ClientSessionObject inClientSession;

SInt64 inCurrentTime;

QTSS_TimeVal outNextPacketTime;

} QTSS_RTPSendPackets_Params;

inClientSession

The QTSS_ClientSessionObject object for the client session. See the
section “qtssClientSessionObjectType” (page 57) for information
about client session object attributes.

inCurrentTime

The current time in server time units.
outNextPacketTime

A time offset in milliseconds. Before returning from this role, a
module should set outNextPacketTime to the amount of time that the
server should allow to elapse before calling the RTP Send Packets
role again for this session.

The RTP Send Packets role is invoked whenever a module calls QTSS_Play for that
client session. The module calls QTSS_Write or QTSS_WriteV to send data to the client.

While a module is handling the RTP Send Packets role, the server guarantees that
the module will not be called for any role referencing the client session specified by
inClientSession.

A module that wants to be called in the RTP Send Packets role must in its Register
role call QTSS_AddRole and specify QTSS_RTPSendPackets_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Client Session Closing Role

The server calls a module’s Client Session Closing role to allow the module to
process the closing of client sessions.

When called, the Client Session Closing role receives a
QTSS_ClientSessionClosing_Params structure, which is defined as follows:

54
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

typedef struct

{

QTSS_ClientClosing inReason;

QTSS_ClientSessionObject inClientSession;

} QTSS_ClientSessionClosing_Params;

inReason

The reason why the session is closing. The session may be closing
because the client sent an RTSP teardown
(qtssCliSesClosClientTeardown), because this session has timed out
(qtssCliSesClosTimeout), or because the client disconnected without
issuing a teardown (qtssCliSesClosClientDisconnect).

inClientSession

The QTSS_ClientSessionObject object for the client session that is
closing.

The Client Session Closing role is called whenever the client session specified by
inClientSession is about to be torn down.

While a module is handling the Client Session Closing role, the server guarantees
that the module will not be called for any role referencing the client session
specified by inClientSession.

A module that wants to be called in the Client Session Closing role must in its
Register role call QTSS_AddRole and specify QTSS_ClientSessionClosing_Role as the
role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTCP Process Role
The server calls a module’s RTCP Process role whenever it receives an RTCP
receiver report from a client.

RTCP receiver reports contain feedback from the client on the quality of the stream.
The feedback includes the percentage of lost packets, the number of times the audio
has run dry, and frames per second. Many attributes in the QTSS_RTPStreamObject
correlate directly to fields in the receiver report.

When called, the RTP Process role receives a QTSS_RTCPProcess_Params structure,
which is defined as follows:

C H A P T E R 2

Concepts

55
  Apple Computer, Inc. August 29, 2003

typedef struct

{

QTSS_RTPStreamObject inRTPStream;

QTSS_ClientSessionObject inClientSession;

void* inRTCPPacketData;

UInt32 inRTCPPacketDataLen;

} QTSS_RTCPProcess_Params;

inRTPStream

The QTSS_RTPStreamObject object for the RTP stream that this RTCP
packet belongs to. See the section “qtssRTPStreamObjectType”
(page 95) for information about RTP stream object attributes.

inClientSession

The QTSS_ClientSessionObject object for the client session. See the
section “qtssClientSessionObjectType” (page 57) for information
about client session object attributes.

inRTCPPacketData

A pointer to a buffer containing the packets that are to be processed.
inRTCPPacketDataLen

The length of valid data in the buffer pointed to by inRTCPPacketData.
A module handling the RTCP Process role typically monitors the status of the
connection. It might, for example, track the percentage of packets lost for each
connected client and update its counters.

While a module is handling the RTCP Process role, the server guarantees that the
module will not be called for any role referencing the RTP stream specified by
inRTPStream.

A module that wants to be called in the RTCP Process role must in its Register role
call QTSS_AddRole and specify QTSS_RTCPProcess_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

QTSS Objects

QTSS objects provide a way for modules and the server to exchange data with each
other. QTSS objects consist of attributes that are used to store data. Every attribute
has a name, an attribute ID, a data type, and permissions for reading and writing
the attribute’s value. Built-in attributes are attributes that the server always defines
for an object type. For example, the QTSS_RTSPRequestObject object has a built-in
URL attribute that other modules can read to obtain the URL associated with a
particular RTSP request.

This section describes the attributes for each object type. The object types are

� qtssAttrInfoObjectType (page 57)

� qtssClientSessionObjectType (page 57)

� qtssConnectedUserObjectType (page 61)

� qtssDynamicObjectType (page 63)

� qtssFileObjectType (page 63)

� qttsModuleObjectType (page 64)

� qtssPrefsObjectType (page 79)

� qtssRTPStreamObjectType (page 95)

� qtssRTSPHeaderObjectType (page 99)

� qtssRTSPRequestObjectType (page 100)

� qtssRTSPSessionObjectType (page 104)

� qtssServerObjectType (page 106)

� qtssTextMessageObjectType (page 111)

C H A P T E R 2

Concepts

57
  Apple Computer, Inc. August 29, 2003

qtssAttrInfoObjectType
An object of type qtssAttrInfoObjectType consists of attributes whose values
describe an attribute: the attribute’s name, attribute ID, data type, and permissions
for reading and writing the attribute’s value. An attribute information object
(QTSS_AttrInfoObject) is an instance of this object type. There is one
QTSS_AttrInfoObject for every attribute.

Table 2-2 lists the attributes for objects of type qtssAttrInfoObjectType.

Note: All of these attributes are preemptive safe, so they can
be read by calling QTSS_GetValue, QTSS_GetValueAsString, or
QTSS_GetValuePtr.

qtssClientSessionObjectType
An object of type qtssClientSessionObjectType consists of attributes that describe a
client session, where a client session is defined as a single client streaming
presentation. A client session object (QTSS_ClientSessionObject) is an instance of
this object type. The attributes of a client session object are valid for all roles that
receive a value of type QTSS_ClientSessionObject in the structure the server passes
to them.

Table 2-2 Attributes of objects of type qtssAttrInfoObjectType

Attribute Name and Description Access Data Type

qtssAttrName
The attribute’s name.

Readable,
preemptive safe

char

qtssAttrID
The attribute’s identifier.

Readable,
preemptive safe

QTSS_AttributeID

qtssAttrDataType
The attribute’s data type.

Readable,
preemptive safe

QTSS_AttrDataType

qtssAttrPermissions
Permissions for reading and writing the
attribute’s value, and whether getting the
attribute’s value is preemptive safe.

Readable,
preemptive safe

QTSS_AttrPermission

58
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Table 2-3 lists the attributes for objects of type qtssClientSessionObjectType.

Note: All of these attributes are preemptive safe, so they can
be read by calling QTSS_GetValue, QTSS_GetValueAsString, or
QTSS_GetValuePtr.

Table 2-3 Attributes of objects of type qtssClientSessionObjectType

Attribute Name and Description Access Data Type

qtssCliSesStreamObjects
Iterated attribute containing all RTP
stream references (QTSS_RTPStreamObject)
belonging to this session.

Readable,
preemptive safe

QTSS_RTPStreamObject

qtssCliSesCreateTimeInMsec
The time in milliseconds that the session
was created.

Readable,
preemptive safe

QTSS_TimeVal

qtssCliSesFirstPlayTimeInMsec
The time in milliseconds at which
QTSS_Play was first called.

Readable,
preemptive safe

QTSS_TimeVal

qtssCliSesPlayTimeInMsec
The time in milliseconds at which
QTSS_Play was most recently called.

Readable,
preemptive safe

QTSS_TimeVal

qtssCliSesAdjustedPlayTimeInMsec
The time in milliseconds at which the
most recent play was issued, adjusted
forward to delay sending packets until
the play response is issued.

Readable,
preemptive safe

QTSS_TimeVal

qtssCliSesRTPBytesSent
The number of RTP bytes sent for this
session.

Readable,
preemptive safe

SInt32

qtssCliSesRTPPacketsSent
The number of RTP packets sent for this
session.

Readable,
preemptive safe

SInt32

qtssCliSesState
The state of this session. Possible values
are qtssPausedState and
qtssPlayingState.

Readable,
preemptive safe

QTSS_RTPSessionState

C H A P T E R 2

Concepts

59
  Apple Computer, Inc. August 29, 2003

qtssCliSesPresentationURL
The presentation URL for this session.
This URL is the “base” URL for the
session. RTSP requests to the
presentation URL are assumed to affect
all streams of the session.

Readable,
preemptive safe

char

qtssCliSesMovieDurationInSecs
Duration of the movie for this session in
seconds. The value is zero unless set by a
module.

Readable,
writable,
preemptive safe

Float64

qtssCliSesMovieSizeInBytes
Movie size in bytes. The value is zero
unless set by a module.

Readable,
writable,
preemptive safe

UInt64

qtssCliSesMovieAverageBitRate
The average bits per second based on
total RTP bits/movie duration. The value
is zero unless set by a module.

Readable,
writable,
preemptive safe

UInt32

qtssCliSesFullURL
The full presentation URL for this
session. Same as the
qtssCliSesPresentationURL attribute but
includes the
rtsp://domain_name prefix.

Readable,
preemptive safe

char

qtssCliSesHostName
The host name for this session. Also the
domain_name portion of the
qtssCliSesFullURL attribute.

Readable,
preemptive safe

char

qtssCliRTSPSessRemoteAddrStr
The IP address of the client in dotted
decimal format.

Readable,
preemptive safe

char

qtssCliRTSPSessLocalDNS
The DNS name of the local IP address for
this RTSP connection.

Readable,
preemptive safe

char

Table 2-3 Attributes of objects of type qtssClientSessionObjectType
(continued)

Attribute Name and Description Access Data Type

60
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssCliRTSPSessLocalAddrStr
The local IP address for this RTSP
connection in dotted decimal format.

Readable,
preemptive safe

char

qtssCliRTSPSesUserName
The name of the user from the most
recent request.

Readable,
preemptive safe

char

qtssCliRTSPSesURLRealm
The realm from the most recent request.

Readable,
preemptive safe

char

qtssCliRTSPReqRealStatusCode
The status from the most recent request.
(Same as the qtssRTSPReqRealStatusCode
session.)

Readable,
preemptive safe

UInt32

qtssCliTeardownReason
The teardown reason. If not requested by
the client, the reason for the
disconnection must be set by the module
that calls QTSS_Teardown.

Readable,
writable,
preemptive safe

QTSS_CliSesTeardownReason

qtssCliSesReqQueryString
The query string from the request that
created this client session.

Readable,
preemptive safe

char

qtssCliRTSPReqRespMsg
The error message sent to the client for
the most recent request if the response
was an error.

Readable,
preemptive safe

char

qtssCliSesCurrentBitRate
The movie bit rate.

Readable,
preemptive safe

UInt32

Table 2-3 Attributes of objects of type qtssClientSessionObjectType
(continued)

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

61
  Apple Computer, Inc. August 29, 2003

qtssConnectedUserObjectType
An object of type qtssConnectedUserObjectType consists of attributes associated
with a connected user, irrespective of the transport. Users connecting to a
QuickTime movie are already represented by objects of type
qtssClientSessionObjectType, so this object is used for other connected users, such
as those requesting MP3 streams.

A connected user object (QTSS_ConnectedUserObject) is an instance of this object
type. A QTSS_ConnectedUserObject can be created in any module. It can be added to
the qtssSvrConnectedUsers attribute of the QTSS_ServerObject (described in the
section “qtssServerObjectType” (page 106)).

Table 2-4 lists the attributes for objects of type qtssConnectedUserObjectType.

qtssCliSesPacketLossPercent
Percentage of packets lost; for example,
.5 = 50%

Readable,
preemptive safe

Float32

qtssCliSesTimeConnectedinMsec
Time in milliseconds that the client
session has been connected.

Readable,
preemptive safe

SInt64

qtssCliSesCounterID
A counter-based unique ID for the
session.

Readable,
preemptive safe

UInt32

Table 2-3 Attributes of objects of type qtssClientSessionObjectType
(continued)

Attribute Name and Description Access Data Type

62
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Note: All of these attributes are preemptive safe, so they can
be read by calling QTSS_GetValue, QTSS_GetValueAsString,
QTSS_GetValuePtr.

Table 2-4 Attributes of objects of type qtssConnectedUserObjectType

Attribute Name and Description Access Data Types

qtssConnectionType
The user’s connection type, such as
“MP3”.

Readable,
preemptive safe

char

qtssConnectionCreateATimeInMsec
The time in milliseconds at which the
session was created.

Readable,
preemptive safe

QTSS_TimeVal

qtssConnectionTimeConnectedInMsec
Time in milliseconds the session has been
connected.

Readable,
preemptive safe

QTSS_TimeVal

qtssConnectionBytesSent
Number of RTP bytes sent so far for this
session.

Readable,
preemptive safe

UInt32

qtssConnectionMountPoint
Presentation URL for this session. This
URL is the “base” URL for the session.
RTSP requests to this URL are assumed to
affect all of the session’s streams.

Readable,
preemptive safe

char

qtssConnectionHostName
The host name of the connected client.

Readable,
preemptive safe

char

qtssConnectionSessRemoteAddrStr
IP address of the client in dotted-decimal
format.

Readable,
preemptive safe

char

C H A P T E R 2

Concepts

63
  Apple Computer, Inc. August 29, 2003

qtssDynamicObjectType
An object of type qtssDynamicObjectType can be used to create an object that doesn’t
have any static attributes.

qtssFileObjectType
An object of type qtssFileObject consists of attributes that describe a file that has
been opened. A file object (QTSS_FileObject) is an instance of this object type. These
attributes are valid for all roles that receive a QTSS_FileObject in the structure the
server passes to them.

Table 2-5 lists the attributes for objects of type qtssFileObjectType.

qtssConnectionSessLocalAddrStr
Local IP address for this connection in
dotted-decimal format.

Readable,
preemptive safe

char

qtssConnectionCurrentBitRate
Combined current bit rate in bits per
second of all of the streams for this
session. This is not an average.

Readable,
preemptive safe

UInt32

qtssConnectionPacketLossPercent
Combined current percent loss as a
fraction; for example, .5 = 50%. This is not
an average.

Readable,
preemptive safe

Float32

Table 2-4 Attributes of objects of type qtssConnectedUserObjectType
(continued)

Attribute Name and Description Access Data Types

64
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Note: All of these attributes are preemptive safe, so they can
be read by calling QTSS_GetValue, QTSS_GetValueAsString, or
QTSS_GetValuePtr.

qttsModuleObjectType
An object of type qtssModuleObject consists of attributes that describe a particular
QTSS module, including its name, version number, a description of what the
module does, its preferences, and the roles the module is registered for. A module
object (QTSS_ModuleObject) is an instance of this object type. These attributes are
valid for all roles that receive a QTSS_ModuleObject in the structure the server passes
to them.

For each module the server loads, the server creates a module object and passes it
to the module in the module’s Initialize role. Modules can get information about
other modules the server has loaded by accessing the qtssSvrModuleObject attribute
of the QTSS_ServerObject object.

Table 2-5 Attributes of objects of type qtssFileObjectType

Attribute Name and Description Access Data Type

qtssFlObjStream
The stream reference for this file object.

Readable,
preemptive safe

QTSS_Stream Ref

qtssFlOjFileSysModuleName
The name of the file system module that
handles this file object

Readable,
preemptive safe

char

qtssFlObjLength
The length of the file in bytes.

Readable,
writable,
preemptive safe

UInt64

qtssFlObjPosition
The current position in bytes of the file’s
file pointer from the beginning of the file
(byte zero).

Readable,
writable,
preemptive safe

UInt64

qtssFlObjModDate
The date and time of the last time the file
was modified.

Readable,
writable,
preemptive safe

QTSS_TimeVal

C H A P T E R 2

Concepts

65
  Apple Computer, Inc. August 29, 2003

In addition to the attributes that store the module’s name, version number and
description, this object type has a module preferences attribute, qtssModPrefs. The
qtssModPrefs attribute itself is an object whose attributes store the module’s
preferences as instance attributes. All modifications to the qtssModPrefs attribute
are persistent between invocations of the server because the contents of each
module’s qtssModPrefs attribute are written to the server’s configuration file, which
is read when the server starts up.

Table 2-6 lists the attributes for objects of type qtssModuleObjectType.

Note: With the exception of qtssModDesc and qtssModVersion,
these attributes are preemptive safe and can be read by calling
QTSS_GetValue, QTSS_GetValueAsString, or QTSS_GetValuePtr.

Table 2-6 Attributes of objects of type qtssModuleObjectType

Attribute Name and Description Access Data Type

qtssModName
The module’s name.

Readable,
preemptive safe

char

qtssModDesc
A description of what the module does.

Readable,
write
not preemptive safe

char

qtssModVersion
The module’s version number in the
format 0xMM.m.v.bbbb, where
MM = major version, m = minor version,
v = very minor version, and b = build
number.

Readable,
writable,
not preemptive safe

UInt32

qtssModRoles
A list of all the roles for which this
module is registered.

Readable,
preemptive safe

QTSS_Role

qtssModPrefs
An object whose attributes store the
preferences for this module.

Readable,
preemptive safe

QTSS_ModulePrefsObject

qtssModAttributes
An object that modules can use to store
any local attributes other than preferences.

Readable,
writable,
preemptive safe

QTSS_Object

66
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssModulePrefsObjectType
An object of type QTSS_ModulePrefsObject consists of attributes that contain a
module’s preferences. A module preferences object QTSS_ModulePrefsObject) is an
instance of this object type.

Each module is reponsible for adding attributes to its module preferences object and
setting their values. The values of the preferences in the module preferences object
are persistent between invocations of the server because the server writes the
module preferences object for each module to a configuration file that the server
reads when it is started.

QTSSAccessLogModule Preferences

Table 2-7 lists the attributes for preferences of the module QTSSAccessLogModule.
These preferences are maintained in the streamingserver.xml file.

Table 2-7 Attributes for preferences of the module QTSSAccessLogModule

Attribute Name and Description Access Data Type

request_logging
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

request_logfile_size
By default, the value of this attribute is
10240000.

Readable,
writable,
not preemptive safe

UInt32

request_logfile_interval
By default, the value of this attribute is 7.

Readable,
writable,
not preemptive safe

UInt32

C H A P T E R 2

Concepts

67
  Apple Computer, Inc. August 29, 2003

QTSSAccessModule Preferences

Table 2-8 lists the attributes for preferences of the module QTSSAccessModule. These
preferences are maintained in the streamingserver.xml file.

request_logfile_in_gmt
Set to true to use Greenwich Mean Time
(GMT) instead of local time in access log
file entries. By default, the value of this
attribute is true.

Readable,
writable,
not preemptive safe

Bool16

request_logfile_dir
By default, the value of this attribute is
/Library/QuickTimeStreaming/Logs/.

Readable,
writable,
not preemptive safe

char

request_logfile_name
By default, the value of this attribute is
StreamingServer.

Readable,
writable,
not preemptive safe

char

Table 2-8 Attributes for preferences of the module QTSSAccessModule

Attribute Name and Description Access Data Type

modAccess_usersfilepath
By default, the value of this attribute is
/Library/QuickTimeStreaming/Config/
qtusers.

Readable,
writable,
not preemptive safe

char

modAccess_groupsfilepath
By default, the value of this attribute is
/Library/QuickTimeStreaming/Config/
qtgroups.

Readable,
writable,
not preemptive safe

char

modAccess_qtaccessfilename
By default, the value of this attribute is
qtaccess.

Readable,
writable,
not preemptive safe

char

Table 2-7 Attributes for preferences of the module QTSSAccessLogModule

Attribute Name and Description Access Data Type

68
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

QTSSAdminModule Preferences

Table 2-9 lists the attributes for preferences of the module QTSSAdminModule. These
preferences are maintained in the streamingserver.xml file.

Table 2-9 Attributes for preferences of the module QTSSAdminModule

Attribute Name and Description Access Data Type

IPAccessList
Set to a list of IP addresses to allow remote
admin access from the specified IPs only.
By default, the value of this attribute is
127.0.0.*.

Readable,
writable,
not preemptive
safe

char

Authenticate
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive
safe

Bool16

LocalAccessOnly
Set to true to allow local admin server
requests only. By default, the value of this
attribute is true.

Readable,
writable,
not preemptive
safe

Bool16

RequestTimeIntervalMilli
By default, the value of this attribute is 50.

Readable,
writable,
not preemptive
safe

UInt32

enable_remote_admin
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive
safe

Bool16

AdministratorGroup
By default, the value of this attribute is
admin.

Readable,
writable,
not preemptive
safe

char

C H A P T E R 2

Concepts

69
  Apple Computer, Inc. August 29, 2003

QTSSFileModule Preferences

Table 2-10 lists the attributes for preferences of the module QTSSFileModule. These
preferences are maintained in the streamingserver.xml file.

Table 2-10 Attributes for preferences of the module QTSSFileModule

Attribute Name and Description Access Data Type

flow_control_probe_interval
By default, the value of this attribute is 10.

Readable,
writable,
not preemptive safe

UInt32

max_allowed_speed
By default, the value of this attribute is
4.000000.

Readable,
writable,
not preemptive safe

Float32

enable_shared_file_buffers
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

enable_private_file_buffers
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

num_shared_buffer_increase_per_session
By default, the value of this attribute is 2.

Readable,
writable,
not preemptive safe

UInt32

shared_buffer_unit_k_size
By default, the value of this attribute is 32.

Readable,
writable,
not preemptive safe

UInt32

private_buffer_unit_k_size
By default, the value of this attribute is 32.

Readable,
writable,
not preemptive safe

UInt32

num_shared_buffer_units_per_buffer
By default, the value of this attribute is 0.

Readable,
writable,
not preemptive safe

UInt32

num_private_buffer_units_per_buffer
By default, the value of this attribute is 1.

Readable,
writable,
not preemptive safe

UInt32

70
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

max_shared_buffer_units_per_buffer
By default, the value of this attribute is 8.

Readable,
writable,
not preemptive safe

UInt32

max_private_buffer_units_per_buffer
By default, the value of this attribute is 8.

Readable,
writable,
not preemptive safe

UInt32

add_seconds_to_client_buffer_delay
Adds the specified number of seconds to
the normal buffer delay. By default, the
value of this attribute is 0.000000.

Readable,
writable,
not preemptive safe

Float32

record_movie_file_sdp
Set to true to cause SDP information to be
provided when the movie is played. By
default, the value of this attribute is false.

Readable,
writable,
not preemptive safe

Bool16

enable_movie_file_sdp
Set to true to override the movie’s built-in
SDP information. By default, the value of
this attribute is false.

Readable,
writable,
not preemptive safe

Bool16

sdp_url
By default, this attribute does not have a
value.

Readable,
writable,
not preemptive safe

char

admin_email
By default, this attribute does not have a
value.

Readable,
writable,
not preemptive safe

char

Table 2-10 Attributes for preferences of the module QTSSFileModule

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

71
  Apple Computer, Inc. August 29, 2003

QTSSFlowControlModule Preferences

Table 2-11 lists the attributes for preferences of the module QTSSFlowControlModule.
These preferences are maintained in the streamingserver.xml file.

Table 2-11 Attributes for preferences of the module QTSSFlowControlModule

Attribute Name and Description Access Data Type

loss_thin_tolerance
By default, the value of this attribute is 30.

Readable,
writable,
not preemptive safe

UInt32

num_losses_to_thin
By default, the value of this attribute is 3.

Readable,
writable,
not preemptive safe

UInt32

loss_thick_tolerance
By default, the value of this attribute is 5.

Readable,
writable,
not preemptive safe

UInt32

num_losses_to_thick
By default, the value of this attribute is 6.

Readable,
writable,
not preemptive safe

UInt32

num_worses_to_thin
By default, the value of this attribute is 2.

Readable,
writable,
not preemptive safe

UInt32

72
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

QTSSHomeDirectoryModule Preferences

Table 2-12 lists the attributes for preferences of the module
QTSSHomeDirectoryModule. These preferences are maintained in the
streamingserver.xml file.

Table 2-12 Attributes for preferences of the module QTSSHomeDirectoryModule

Attribute Name and Description Access Data Type

enabled
Enable or disable this module.
By default, the value of this attribute is
false.

Readable,
writable,
not preemptive safe

Bool16

movies_directory
By default, this attribute does not have a
value.

Readable,
writable,
not preemptive safe

Bool16

max_num_cons_per_home_directory
Denies additional client connections
greater than the value of this attribute.
By default, the value of this attribute is 0.

Readable,
writable,
not preemptive safe

UInt32

max_bandwidth_kbps_per_home_directory
Denies additional client connections when
the value of this attribute is exceeded.
By default, the value of this attribute is 0..

Readable,
writable,
not preemptive safe

UInt32

C H A P T E R 2

Concepts

73
  Apple Computer, Inc. August 29, 2003

QTSSMP3StreamingModule Preferences

Table 2-13 lists the attributes for preferences of the module QTSSMp3StreamingModule.
These preferences are maintained in the streamingserver.xml file.

Table 2-13 Attributes for preferences of the module QTSSMP3StreamingModule

Attribute Name and Description Access Data Type

mp3_request_logfile_name
By default, the value of this attribute is
mp3_access.

Readable,
writable,
not preemptive safe

char

mp3_request_logfile_dir
By default, the value of this attribute is
/Library/QuickTimeStreaming/Logs.

Readable,
writable,
not preemptive safe

char

mp3_streaming_enabled
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

mp3_broadcast_password
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

mp3_broadcast_password
By default, this attribute has no value.

Readable,
writable,
not preemptive safe

char

mp3_broadcast_buffer_size
By default, the value of this attribute is
8192.

Readable,
writable,
not preemptive safe

SInt32

mp3_max_flow_control_time
Length of the server-side MP3 buffer. By
default, the value of this attribute is 10000.

Readable,
writable,
not preemptive safe

UInt32

mp3_request_logging
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

74
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

QTSSReflectorModule Preferences

Table 2-14 lists the attributes for preferences of the module QTSSReflectorModule.
These preferences are maintained in the streamingserver.xml file.

mp3_request_logfile_size
By default, the value of this attribute is
10240000.

Readable,
writable,
not preemptive safe

UInt32

mp3_request_logfile_interval
By default, the value of this attribute is 7.

Readable,
writable,
not preemptive safe

UInt32

mp3_request_logtime_in_gmt
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

Table 2-14 Attributes for preferences of the module QTSSReflectorModule

Attribute Name and Description Access Data Type

reflector_bucket_offset_delay_msc
By default, the value of this attribute is 73.

Readable,
writable,
not preemptive safe

UInt32

reflector_buffer_size_sec
By default, the value of this attribute is 10.

Readable,
writable,
not preemptive safe

UInt32

reflector_use_in_packet_receive_time
By default, the value of this attribute is
false.

Readable,
writable,
not preemptive safe

Bool16

reflector_in_packet_receive_time
By default, the value of this attribute is 60.

Readable,
writable,
not preemptive safe

UInt32

Table 2-13 Attributes for preferences of the module QTSSMP3StreamingModule

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

75
  Apple Computer, Inc. August 29, 2003

enable_rtp_play_info
By default, the value of this attribute is
false.

Readable,
writable,
not preemptive safe

Bool16

allow_non_sdp_urls
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

enable_broadcast_announce
Set to true to enable broadcaster announce
of an SDP file to the server. By default, the
value of this attribute is true.

Readable,
writable,
not preemptive safe

Bool16

enable_broadcast_push
Set to true to enable broadcaster RTSP
push to the server. By default, the value of
this attribute is true.

Readable,
writable,
not preemptive safe

Bool16

max_broadcast_announce_duration_secs
Sets the maximum duration, in seconds, of
announced SDPs. By default, the value of
this attribute is 0, which allows an infinite
duration.

Readable,
writable,
not preemptive safe

UInt32

allow_duplicate_broadcasts
Set to true to allow the acceptance of
setups on an existing broadcast stream. By
default, the value of this attribute is false.

Readable,
writable,
not preemptive safe

Bool16

enforce_static_sdp_port_range
By default, the value of this attribute is
false.

Readable,
writable,
not preemptive safe

Bool16

minimum_static_sdp_port
By default, the value of this attribute is
2000.

Readable,
writable,
not preemptive safe

UInt16

maximum_static_sdp_port
By default, the value of this attribute is
65535.

Readable,
writable,
not preemptive safe

UInt16

Table 2-14 Attributes for preferences of the module QTSSReflectorModule

Attribute Name and Description Access Data Type

76
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

kill_clients_when_broadcast_stops
When set to true, clients watching the
stream of a broadcaster RTSP session that
goes down are also torn down. By default,
the value of this attribute is false.

Readable,
writable,
not preemptive safe

Bool16

use_one_SSRC_per_stream
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

timeout_broadcaster_session_secs
By default, the value of this attribute is 20.

Readable,
writable,
not preemptive safe

UInt32

authenticate_local_broadcast
By default, the value of this attribute is
false.

Readable,
writable,
not preemptive safe

Bool16

disable_overbuffering
By default, the value of this attribute is
false.

Readable,
writable,
not preemptive safe

Bool16

allow_broadcasts
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

allow_announced_kill
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

redirect_broadcast_keyword
By default, this attribute has no value.

Readable,
writable,
not preemptive safe

char

Table 2-14 Attributes for preferences of the module QTSSReflectorModule

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

77
  Apple Computer, Inc. August 29, 2003

redirect_broadcasts_dir
By default, this attribute has no value.

Readable,
writable,
not preemptive safe

char

broadcast_dir_list
By default, this attribute has no value.

Readable,
writable,
not preemptive safe

char

ip_allow_list
By default, the value of this attribute is
127.0.0.*.

Readable,
writable,
not preemptive safe

char

Table 2-14 Attributes for preferences of the module QTSSReflectorModule

Attribute Name and Description Access Data Type

78
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

QTSSRefMovieModule Preferences

Table 2-15 lists the attributes for preferences of the module QTSSRefMovieModule,
which allows web developers to put RTSP URLs in web pages. These preferences
are maintained in the streamingserver.xml file.

Table 2-15 Attributes for preferences of the module QTSSRefMovieModule

Attribute Name and Description Access Data Type

refmovie_xfer_enabled
For QuickTime clients only, converts, for
example, HTTP://hostname/mymovie.mov to
RTSP://hostname:554/mymovie.mov. The
server creates a text-based ref movie as the
HTTP response, which redirects the client
to the same movie on the server but as an
RTSP request. This conversion is useful for
placing streaming movie references on a
web server. HTTP requests that do not
specify a port go to port 80. However,
HTTP://hostname:554/mymovie.mov also
works.
By default, the value of this attribute is
true.

Readable,
writable,
not preemptive safe

Bool16

refmovie_rtsp_port
The port to use for RTSP request
redirection. Technically, this is not a
protocol redirect. It is a media or content
level redirect. Works the same as if you
had a text file on a web server called
mymovie.mov that contained the RTSP URL
with an rtsptext QuickTime tag. The tag
and file name extension would tell the
QuickTime client to RTSP stream the file.
By default,the value of this attribute is 554.

Readable,
writable,
not preemptive safe

UInt16

C H A P T E R 2

Concepts

79
  Apple Computer, Inc. August 29, 2003

QTSSRelayModule Preferences

Table 2-16 lists the attributes for preferences of the module QTSSRelayModule. These
preferences are maintained in the streamingserver.xml file.

qtssPrefsObjectType
An object of type qtssPrefsObjectType consists of attributes that describe the
server’s internal preference storage system. A preference object (QTSS_PrefsObject)
is an instance of this object type. The attribute values for objects of this type are
stored in the server’s configuration file, streamingserver.xml. For each server, there
is a single instance of this object type.

In previous versions of the QTSS programming interface, module preferences were
stored in this object. Since version 4.0, module preferences have been stored in each
module’s QTSS_ModuleObject object.

Table 2-17 lists the attributes for objects of type qtssPrefsObjectType.

Table 2-16 Attributes for preferences of the module QTSSRelayModule

Attribute Name and Description Access Data Type

relay_prefs_file
By default, the value of this attribute is
/Library/QuickTimeStreaming/Config/
relayconfig.xml.

Readable,
writable,
not preemptive safe

char

relay_stats_url
By default, this attribute has no value.

Readable,
writable,
not preemptive safe

char

80
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Note: None of these attributes is preemptive safe, so they can
must be read by calling QTSS_GetValue or by locking the object,
calling QTSS_GetValuePtr, and unlocking the object.

Table 2-17 Attributes of objects of type qtssPrefsObjectType

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

qtssPrefsRTSPTimeout
Amount of time in seconds the
server tells clients it will wait before
disconnecting idle RTSP clients. By
default, the value of this attribute is
0.

rtsp_timeout Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsRealRTSPTimeout
The amount of time in seconds the
server actually waits before
disconnecting idle RTSP clients. This
timer is reset each time the server
receives a new RTSP request from
the client. A value of zero means that
there is no timeout. By default, the
value of this attribute is 180.

real_rtsp_timeout Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsRTPTimeout
The amount of time in seconds the
server will wait before disconnecting
idle RTP clients. This timer is reset
each time the server receives an
RTCP status packet from a client. A
value of zero means there is no
timeout. By default, the value of this
attribute is 120.

rtp_timeout Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsMaximumConnections
The maximum number of concurrent
RTP connections the server allows. A
value of –1 means that an unlimited
number of connections are allowed.
By default, the value of this attribute
is 1000.

maximum_connections Readable,
writable, not
preemptive
safe

SInt32

C H A P T E R 2

Concepts

81
  Apple Computer, Inc. August 29, 2003

qtssPrefsMaximumBandwidth
The maximum amount of bandwidth
the server is allowed to serve in K
bits. If the server exceeds this value,
it responds to new client requests for
additional streams with RTSP error
453, “Not Enough Bandwidth.” A
value of –1 means the amount of
bandwidth the server is allowed to
serve is unlimited. By default, the
value of this attribute is 102400.

maximum_bandwidth Readable,
writable, not
preemptive
safe

SInt32

qtssPrefsMovieFolder
The path to the root movie folder. By
default, the value of this attribute is
/Library/QuickTimeStreaming/
Movies.

movie_folder Readable,
writable, not
preemptive
safe

char

qtssPrefsRTSPIPAddr
Specifies the IP address(es) in
dotted-decimal format the server
should accept RTSP client
connections on. This attribute is
useful when the machine has more
than one IP address and you want to
specify which addresses the server
should listen on. A value of 0 means
the server should accept connections
on all IP addresses that are currently
enabled on the system. By default,
the value of this attribute is 0.

bind_ip_addr Readable,
writable, not
preemptive
safe

char

qtssPrefsBreakOnAssert
If true, the server will stop and enter
the debugger when an assert
condition is hit. By default, the value
of this attribute is false.

break_on_assert Readable,
writable, not
preemptive
safe

Bool16

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

82
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssPrefsAutoRestart
If true, the server automatically
restarts itself if it crashes. By default,
the value of this attribute is true.

auto_restart Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsTotalBytesUpdate
The interval in seconds between
updates of the server’s total bytes
and current bandwidth statistics. By
default, the value of this attribute is
1.

total_bytes_update Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsAvgBandwidthUpdate
The interval in seconds between
computations of the server’s average
bandwidth. By default, the value of
this 60.

average_bandwidth_u
pdate

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsSafePlayDuration
If the server finds it is serving more
than its allowed maximum
bandwidth (using the average
bandwidth computation), it will
attempt to disconnect the most
recently connected clients until the
average bandwidth drops to
acceptable levels. However, it will
not disconnect clients if they’ve been
connected for longer than the time in
seconds specified by this attribute. If
this value is set to zero, the server
does not disconnect clients. By
default, the value of this attribute is
600.

safe_play_duration Readable,
writable, not
preemptive
safe

UInt32

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

C H A P T E R 2

Concepts

83
  Apple Computer, Inc. August 29, 2003

qtssPrefsModuleFolder
The path to the folder containing
dynamic loadable server modules.
For Mac OS X, this attribute is set to
/Library/QuickTimeStreaming/
Moduless. For Darwin platforms, this
attribute is set to
/usr/local/sbin/StreamingServer/
Modules, and for Win32 platforms,
this attribute is set to c:\Program
Files\DarwinStreamingServer\QTSSMo
dules.

module_folder Readable,
writable, not
preemptive
safe

char

The built-in error log module that loads before all other modules uses the following seven
attributes:

qtssPrefsErrorLogName
Sets the name of the error log file. By
default, the value of this attribute is
Error.

error_log_name Readable,
writable, not
preemptive
safe

char

qtssPrefsErrorLogDir
Sets the path to the directory
containing the error log file. By
default, the value of this attribute is
/Library/QuickTimeStreaming/Logs.

error_logfile_dir Readable,
writable, not
preemptive
safe

char

qtssPrefsErrorRollInterval
The interval in days between rolling
the error log file. By default, the
value of this attribute is 0, which
means that the error log file is not
rolled.

error_logfile_inter
val

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsMaxErrorLogSize
The maximum size in bytes of the
error log. A value of zero means that
the server does not impose a limit.
By default, the value of this attribute
is 256000.

error_logfile_size Readable,
writable, not
preemptive
safe

UInt32

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

84
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssPrefsErrorLogVerbosity
Sets the verbosity level of messages
the error logger logs. The following
values are meaningful:

0 = log fatal errors
1 = log fatal errors and warnings
2 = log fatal errors, warnings, and
asserts
3 = log fatal errors, warnings, asserts,
and debug messages

By default, the value of this attribute
is 2.

error_logfile_verbo
sity

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsScreenLogging
If this attribute is set to true , every
line in the error log is written to the
terminal window. Note that to see
the error log, the server must be
launched from the command line in
foreground mode by using the -d
flag. By default, the value of this
attribute is true.

screen_logging Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsErrorLogEnabled
Set to true to enable error logging.
By default, the value of this attribute
is true.

error_logging Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsDropVideoAllPacketsDelayI
nMsec
If a video packet cannot be sent
within the time in milliseconds
specified by this attribute, the server
drops it. This atttribute is used by
the server’s thinning algorithm. By
default, the value of this attribute is
1750.

drop_all_video_dela
y

Readable,
writable, not
preemptive
safe

SInt32

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

C H A P T E R 2

Concepts

85
  Apple Computer, Inc. August 29, 2003

qtssPrefsStartThinningDelayInMsec
If a packet is as late as the value of
this attribute, start thinning. By
default, the value of this attribute is
0.

start_thinning_dela
y

Readable,
writable, not
preemptive
safe

SInt32

qtssPrefsLargeWindowSizeInK
For Reliable UDP, the window size in
K bytes used for high bitrate movies.
For clients that don’t specify a
window size, the server may use the
value of this attribute. By default, the
value of this attribute is 64.

large_window_size Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsWindowSizeThreshold
For Reliable UDP, if the client doesn’t
specify its window size, the server
uses the value of
qtssPrefsSmallWindowSizeInK as the
window size if the bitrate is below
the value of this attribute measured
in K bits/second. By default, the
value of this attribute is 200.

window_size_thresho
ld

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsMinTCPBufferSizeInBytes
The minimum size in bytes the TCP
socket send buffer can be set to. By
default, the value of this attribute is
8192.

min_tcp_buffer_size Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsMaxTCPBufferSizeInBytes
The maximum size in bytes the TCP
socket send buffer can be set to. By
default, the value of this attribute is
200000.

max_tcp_buffer_size Readable,
writable, not
preemptive
safe

Float32

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

86
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssPrefsTCPSecondsToBuffer
When streaming over TCP, the size
of the send buffer is scaled based on
the movie’s bitrate. Using the bitrate
of the movie as a guide, the server
will set the TCP send buffer to fit this
number of seconds of data. By
default, the value of this attribute is
.5.

tcp_seconds_to_buff
er

Readable,
writable, not
preemptive
safe

Float32

qtssPrefsDoReportHTTPConnectionAdd
ress
When behind a round-robin DNS,
the client needs to be told the IP
address of the machine that is
handling its request. This attribute
tells the server to report its IP
address in the reply to the HTTP
GET request when tunneling RTSP
through HTTP. By default, the value
of this attribute is false.

do_report_http_conn
ection_ip_address

Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsDefaultAuthorizationRealm
Specifies the text to display as the
login entity “realm” by the client. By
default, the value of this attribute is
Streaming Server. If the value of this
attribute is not set, Streaming Server
is displayed.

default_authorizati
on_realm

Readable,
writable, not
preemptive
safe

char

qtssPrefsRunUserName
Run the server under the specified
user name. By default, the value of
this attribute is qtss.

run_user_name Readable,
writable, not
preemptive
safe

char

qtssPrefsRunGroupName
Run the server under the specified
group name. By default, the value of
this attribute is qtss.

run_group_name Readable,
writable, not
preemptive
safe

char

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

C H A P T E R 2

Concepts

87
  Apple Computer, Inc. August 29, 2003

qtssPrefsSrcAddrInTransport
If set to true, the server adds its
source address to its transport
headers. This is necessary on certain
networks where the source address
is not necessarily known. By default,
the value of this attribute is false.

append_source_addr_
in_transport

Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsRTSPPorts
Ports for accepting RTSP client
connections. By default, ports 554,
7070, 8000, and 8001 are enabled.
Add port 80 to this list if you are
streaming across the Internet and
want clients behind firewalls to be
able to connect to the server.

rtsp_port Readable,
writable, not
preemptive
safe

UInt16

qtssPrefsMaxRetransDelayInMsec
For Reliable UDP, the maximum
interval in milliseconds between
when a retransmit is supposed to be
sent and when it is actually sent.
Lower values result in smoother but
slower server performance. By
default, the value of this attribute is
500.

max_retransmit_dela
y

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsSmallWindowSizeInK
For Reliable UDP, the window size in
K bytes used for low bitrate movies.
For clients that don’t specify a
window size, the server may use the
value of this attribute. By default, the
value of this attribute is 24.

small_window_size Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsAckLoggingEnabled
Enables detailed logging of UDP
acknowledgement and retransmit
packets. By default, the value of this
attribute is false.

ack_logging_enabled Readable,
writable, not
preemptive
safe

Bool16

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

88
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssPrefsRTCPPollIntervalInMsec
A preference that is no longer used.
Polling is no longer a feature of
RTCP.

rtcp_poll_interval Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsRTCPSockRcvBufSizeInK
Size of the receive socket buffer for
UDP sockets used to receive RTCP
packets. The buffer needs to be big
enough to absorb bursts of RTCP
acknowledgements. By default, the
value of this attribute is 768.

rtcp_rcv_buf_size Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsSendInterval
The minimum time in milliseconds
the server will wait between sending
packet data to the client. By default,
the value of this attribute is 50.

send_interval Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsThickAllTheWayDelayInMsec
If a packet is this late (negative
means it is ahead of time), restore
full quality. This attribute is part of
the server’s thinning algorithm. By
default, the value of this attribute is
-2000.

thick_all_the_way_d
elay

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsAltTransportIPAddr
If you want an IP address other than
the server’s IP address appended to
the transport header, use this
attribute to specify the alternate
address. By default, this attribute
does not have a value.

alt_transport_src_i
paddr

Readable,
writable, not
preemptive
safe

char

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

C H A P T E R 2

Concepts

89
  Apple Computer, Inc. August 29, 2003

qtssPrefsMaxAdvanceSendTimeTimeInS
ec
The most number of seconds the
server sends a packet ahead of time
to a client that supports overbuffing.
By default, the value of this attribute
is 25.

max_send_ahead_time Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsReliableUDPSlowStart
Set to true to enable Reliable UDP
slow start. Disabling UDP slow start
may lead to an initial burst of packet
loss due to mis-estimate of the
client's available bandwidth.
Enabling UDP slow start may lead to
premature reduction of the bit rate
(known as “thinning”). By default,
the value of this attribute is true.

reliable_udp_slow_s
tart

Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsAuthenticationScheme
Set this attribute to the
authentication scheme you want the
server to use. The currently
supported values are basic, digest,
and none. By default, the value of this
attribute is digest.

authentication_sche
me

Readable,
writable, not
preemptive
safe

char

qtssPrefsAutoDeleteSPDFiles
An attribute for a preference that is
no longer supported. The attribute
remains for API compatibility.

auto_delete_sdp_fil
es

Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsDeleteSPDFilesInterval
The interval in seconds at which to
check SDP files. Changes to this
attribute take effect at the end of the
current interval. By default, the
value of this attribute is 10. The
server maintains an internal interval
of 1.

sdp_file_delete_int
erval_seconds

Readable,
writable, not
preemptive
safe

Bool16

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

90
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssPrefsAutoStart
Obsolete and should always be set to
false.

auto_start Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsReliableUDP
If set to true, the server the uses
Reliable UDP transport if requested
by the client. Bydefault, the value of
this attribute is true.

reliable_udp Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsReliableUDPDirs
This attribute specifies the directories
for which Reliable UDP is to be used.
The directories are interpreted as
relative to the Movies folder
(qtssPrefsMovieFolder) with a
leading slash but no trailing slash.
For example, /reliable_udp_dir. By
default, this attribute does not have a
value.

reliable_udp_dirs Readable,
writable, not
preemptive
safe

char

qtssPrefsReliableUDPPrintfs
When set to true, the server prints
on stdout Reliable UDP statistics
when the client disconnects. The
server must have been started with
the -d command line option. The
statistics include the URL, maximum
congestion window, minimum
congestion window, maximim,
minimum, and average RTT, number
of skipped frames, and the number
of late packets dropped. By default,
the value of this attribute is false.

reliable_udp_printf
s

Readable,
writable, not
preemptive
safe

Bool16

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

C H A P T E R 2

Concepts

91
  Apple Computer, Inc. August 29, 2003

qtssPrefsDropAllPacketsDelayInMsec
If a packet is as late as the value of
this attribute in milliseconds, the
server drops it. This attribute is part
of the server’s thinning algorithm.
By default, the value of this attribute
is 2500.

drop_all_packets_de
lay

Readable,
writable, not
preemptive
safe

SInt32

qtssPrefsThinAllTheWayDelayInMsec
If a packet is as late in milliseconds
as the value of this attribute, the
server thins the stream as much as
possible. This attribute is part of the
server’s thinning algorithm. By
default, the value of this attribute is
1500.

thin_all_the_way_de
lay

Readable,
writable, not
preemptive
safe

SInt32

qtssPrefsAlwaysThinDelayInMsec
If a packet is as late in milliseconds
as the value of this attribute, the
server starts to thin. This attribute is
part of the server’s thinning
algorithm. By default, the value of
this attribute is 750.

always_thin_delay Readable,
writable, not
preemptive
safe

SInt32

qtssPrefsStartThickingDelayInMsec
If a packet is this late in milliseconds,
starting thicking. This attribute is
part of the server’s thinning
algorithm. By default, the value of
this attribute is 250.

start_thicking_dela
y

Readable,
writable, not
preemptive
safe

SInt32

qtssPrefsStartQualityCheckInterval
InMsec
The interval in milliseconds at which
server checks thinning and adjusts it
if necessary. This attribute is part of
the server’s thinning algorithm. By
default, the value of this attribute is
1000.

quality_check_inter
val

Readable,
writable, not
preemptive
safe

UInt32

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

92
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssPrefsEnableRTSPErrorMessage
If set to true, the server appends a
content body string error message
for reported RTSP errors. By default,
the value of this attribute is false.

RTSP_error_message Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsEnableRTSPDebugPrintfs
When set to true, the server prints
on stdout incoming RTSP requests
and outgoing RTSP responses. The
server must have been started with
the -d command line option. By
default, the value of this attribute is
false.

RTSP_debug_printfs Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsEnableMonitorStatsFile
If set to true, the server writes server
statistics to the monitor file, which is
read by an external monitor
application. By default, the value of
this attribute is false.

enable_monitor_stat
s_file

Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsMonitorStatsFileIntervalS
ec
Interval at which server writes
server statistics in the monitor file.
By default, the value of this attribute
is 10.

monitor_stats_file_
interval_seconds

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsMonitorStatsFileFileName
Name of the monitor file. By default,
the value of this attribute is
server_status.

monitor_stats_file_
name

Readable,
writable, not
preemptive
safe

char

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

C H A P T E R 2

Concepts

93
  Apple Computer, Inc. August 29, 2003

qtssPrefsEnablePacketHeaderPrintfs
If set to true, the server prints the
headers of outgoing RTP and RTCP
packets on stdout. The server must
have been started with the -d
command line option. See the
qtssPrefsPacketHeaderPrintfOptions
attribute for the available print
options. By default, the value of this
attribute is false.

enable_packet_heade
r_printfs

Readable,
writable, not
preemptive
safe

Bool16

qtssPrefsPacketHeaderPrintfOptions
Identifies which packet headers to
print when
qtssPrefsEnabledPacketHeaderPrintf
s is true. The options are semicolon
(;) delimited strings. By default, the
value of this attribute is all of the
available options,
rtp;rr;sr;app;ack;, which means
that headers of RTP packets (rtp),
RTCP receiver reports (rr), RTCP
sender reports (sr), RTCP
application packets (app), and
Reliable UDP RTP acknowledgement
packets (ack) are printed.

packet_header_print
f_options

Readable,
writable, not
preemptive
safe

char

qtssPrefsOverbufferRate
The server uses this attribute to
calculate the rate at which to
overbuffer. The value of this attribute
is multiplied by the data rate. By
default, the value of this attribute is
2.0.

overbuffer_rate Readable,
writable, not
preemptive
safe

Float32

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

94
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssPrefsMediumWindowSizeInK
For Reliable UDP, the window size in
K bytes used for medium bitrate
movies. For clients that don’t specify
a window size, the server may use
the value of this attribute. By default,
the value of this attribute is 48.

medium_window_size Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsWindowSizeMaxThreshold
The window size in bytes used to
measure reliable UDP bandwidth. If
the bit rate is greater than
qtssPrefsWindowSizeMaxThreshold,
the window size is set to
qtssPrefsLargeWindowSizeInK. If the
bit rate is greater than
qtssPrefsWindowSizeThreshold and
and less than or equal to
qtssPrefsWindowSizeMaxThreshold,
the window is set to
qtssPrefsMediumWindowSizeInK. If the
bit rate is less than or equal to
qtssPrefsWindSizeThreshold, the
window size is set to
qtssPrefsSmallWindowSizeInK. By
default, the value of this attribute is
1000.

window_size_max_thr
eshold

Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsEnableRTSPServerInfo
If set to true, the server adds server
information to RTSP headers. The
informatin includes the server’s
platform, version number, and build
number. By default, the value of this
attribute is true.

RTSP_server_info Readable,
writable, not
preemptive
safe

Bool16

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

C H A P T E R 2

Concepts

95
  Apple Computer, Inc. August 29, 2003

qtssRTPStreamObjectType
An object of type qtssRTPStreamObjectType consists of attributes that describe a
particular RTP stream whether it’s an audio, video, or text stream. An RTP stream
object (QTSS_RTPStreamObject) is an instance of this object type and is created by
calling QTSS_AddRTPStream. An RTP stream object must be associated with a single
client session object (QTSS_ClientSessionObject). A client session object may be
associated with any number of RTP stream objects. These attributes are valid for all
roles that receive a QTSS_RTPStreamObject in the structure the server passes to them.

Table 2-18 lists the attributes for objects of type qtssRTPStreamObjectType.

qtssPrefsRunNumThreads
If value of this attribute is non-zero,
the server will create the specified
number of threads for handling
RTSP and RTP streams. Otherwise,
the server creates one thread per
processor for handling RTSP and
RTP streams. By default, the value of
this attribute is 0.

run_num_threads Readable,
writable, not
preemptive
safe

UInt32

qtssPrefsPIDFile
Specifies the name of the file in
which the server’s process ID is
written. By default, the value of this
attribute is
/var/run/
QuickTimeStreamingServer.pid.

pid_file Readable,
writable, not
preemptive
safe

char

qtssPrefsCloseLogsOnWrite
If set to true, the server closes log
files after each write. By default, the
value of this attribute is false.

force_logs_close_on
_write

Readable,
writable, not
preemptive
safe

Bool16

Table 2-17 Attributes of objects of type qtssPrefsObjectType (continued)

Attribute Name and Description
Name in
streamingserver.xml Access Data Type

96
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Note: All of these attributes are preemptive safe, so they can
be read by calling QTSS_GetValue, QTSS_GetValueAsString, or
QTSS_GetValuePtr.

Table 2-18 Attributes of objects of type qtssRTPStreamObjectType

Attribute Name and Description Access Data Type

qtssRTPStrTrackID
Unique ID that identifies each RTP stream.

Readable,
writable,
preemptive safe

UInt32

qtssRTPStrSSRC
Synchronization source (SSRC) generated
by the server. The SSRC is guaranteed to
be unique among all streams in the
session. The server includes the SSRC in
all RTCP Sender Reports that the server
generates.

Readable,
preemptive safe

UInt32

qtssRTPStrPayloadName
Name of the media for this stream. This
attribute is empty unless a module
explicitly sets it.

Readable,
writable,
preemptive safe

char

qtssRTPStrPayloadType
Payload type of the media for this stream.
The value of this attribute is
qtssUnknownPayloadType unless a module
sets it to qtssVideoPayloadType or
qtssAudioPayloadType.

Readable,
writable,
preemptive safe

QTSS_RTPPayloadType

qtssRTPStrFirstSeqNumber
Sequence number of the first packet after
the last PLAY request was issued. If
known, this attribute must be set by a
module before calling QTSS_Play. The
server uses this attribute to generate a
proper RTSP PLAY response.

Readable,
writable,
preemptive safe

SInt16

C H A P T E R 2

Concepts

97
  Apple Computer, Inc. August 29, 2003

qtssRTPStrFirstTimestampRTP timestamp
of the first RTP packet generated for this
stream after the last PLAY request was
issued. If known, this attribute must be set
by a module before calling QTSS_Play. The
server uses this attribute to generate a
proper RTSP PLAY response.

Readable,
writable,
preemptive safe

SInt32

qtssRTPStrTimescale
Timescale for the track. If known, this
must be set before calling QTSS_Play.

Readable,
writable,
preemptive safe

SInt32

qtssRTPStrBufferDelayInSecs
Size of the client’s buffer. The server sets
this attribute to three seconds, but the
module is responsible for determining the
buffer size and setting this attribute
accordingly.

Readable,
preemptive safe

Float32

qtssRTPStrNetworkMode
Network mode for the RTP stream.
Possible values are
qtssRTPNetworkModeDefault,
qtssRTPNetworkModeMulticast, and
qtssNetworkModeUnicast.

Readable,
preemptive safe

UInt32

The values of the following attributes come from the most recent RTCP packet received on a
stream. If a field in the most recent RTCP packet is blank, the server sets the value of the
corresponding attribute to zero.

qtssRTPStrFractionLostPackets
The fraction of packets that have been lost
for this stream.

Readable,
preemptive safe

UInt32

qtssRTPStrTotalLostPackets
The total number of packets that have
been lost for this stream.

Readable,
preemptive safe

UInt32

qtssRTPStrJitter
Cumulative jitter for this stream.

Readable,
preemptive safe

UInt32

Table 2-18 Attributes of objects of type qtssRTPStreamObjectType (continued)

Attribute Name and Description Access Data Type

98
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssRTPStrRecvBitRate
Average bit rate received by the client in
bits per second.

Readable,
preemptive safe

UInt32

qtssRTPStrAvgLateMilliseconds
Average in milliseconds of packets that the
client received late.

Readable,
preemptive safe

UInt16

qtssRTPStrPercentPacketsLost
Fixed percentage of lost packets for this
stream.

Readable,
preemptive safe

UInt16

qtssRTPStrAvgBugDelayInMsec
Average buffer delay in milliseconds.

Readable,
preemptive safe

UInt16

qtssRTPStrGettingBetter
A non-zero value if the client reports that
the stream is getting better.

Readable,
preemptive safe

UInt16

qtssRTPStrGettingWorse
A non-zero value if the client reports that
the stream is getting worse.

Readable,
preemptive safe

UInt16

qtssRTPStrNumEyes
Number of clients connected to this
stream.

Readable,
preemptive safe

UInt32

qtssRTPStrNumEyesActive
Number of clients playing this stream.

Readable,
preemptive safe

UInt32

qtssRTPStrNumEyesPaused
Number of clients connected but currently
paused.

Readable,
preemptive safe

UInt32

qtssRTPStrTotPacketsRecv
Total packets received by the client.

Readable,
preemptive safe

UInt32

qtssRTPStrTotPacketsDropped
Total packets dropped by the client.

Readable,
preemptive safe

UInt16

qtssRTPStrTotPacketsLost
Total packets lost.

Readable,
preemptive safe

UInt16

Table 2-18 Attributes of objects of type qtssRTPStreamObjectType (continued)

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

99
  Apple Computer, Inc. August 29, 2003

qtssRTSPHeaderObjectType
An object of type qtssRTSPHeaderObjectType consists of attributes containing all of
the RTSP request headers associated with an individual RTSP request. An RTSP
header object (QTSS_RTSPHeaderObject) is an instance of this object type.

The names of the attributes are the names of the RTSP headers associated with that
RTSP request. For example, the following RTSP request has a Session header and a
User-agent header:

qtssRTPStrClientBufFill
How full the client buffer is in tenths of a
second.

Readable,
preemptive safe

UInt16

qtssRTPStrFrameRate
The current frame rate in frames per
second.

Readable,
preemptive safe

UInt16

qtssRTPStrExpFrameRate
The expected frame rate in frames per
second.

Readable,
preemptive safe

UInt16

qtssRTPStrAudioDryCount
Number of times the audio has run dry.

Readable,
preemptive safe

UInt16

qtssRTPStrIsTCP
If this RTP stream is being sent over TCP,
this attribute is true. If this RTP stream is
being sent over UDP, this attribute is
false.

Readable,
preemptive safe

Bool16

qtssRTPStrStreamRef
A QTSS_StreamRef used for sending RTP or
RTCP packets to the client. Use
QTSS_WriteFlags to specify whether each
packet is an RTP or RTCP packet.

Readable,
preemptive safe

QTSS_StreamRef

qtssRTPStrTransportType
The transport type.

Readable,
preemptive safe

QTSS_RTPTransportType

Table 2-18 Attributes of objects of type qtssRTPStreamObjectType (continued)

Attribute Name and Description Access Data Type

100
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

DESCRIBE /foo.mov RTSP/1.0

Session: 20fj02ijf

User-agent: QTS/4.0.3

In this case, the value of the Session attribute is “20fj02ijf” and the value of the
User-agent attribute is “QTS/4.0.3”. Modules can get the value of a given header by
calling QTSS_GetValue, QTSS_GetValueAsString, or QTSS_GetValuePtr.

qtssRTSPRequestObjectType
An object of type qtssRTSPRequestObjectType consists of attributes that describe a
particular RTSP request. An RTSP request object (QTSS_RTSPRequestObject) is an
instance of this object type and exists from the time the server receives a complete
RTSP request from a client until the response is sent and the server moves on to the
next request. An RTSP request object must be associated with a single RTSP session
object (QTSS_RTSPSessionObject) for a given request made over a given connection.

With the exception of the RTSP Filter role, the value of each attribute is available in
all roles that receive an object of type QTSS_RTSPRequestObject. When the RTSP Filter
role receives an object of type QTSS_RTSPRequestObject, the only attribute that has a
value is the qtssRTSPReqFullRequest attribute.

Each text name is identical to its enumerated type name.

Table 2-19 lists the attributes for objects of type qtssRTSPRequestObjectType.

C H A P T E R 2

Concepts

101
  Apple Computer, Inc. August 29, 2003

Note: All of these attributes are preemptive safe, so they can
be read by calling QTSS_GetValue, QTSS_GetValueAsString, or
QTSS_GetValuePtr.

Table 2-19 Attributes of type qtssRTSPRequestObjectType

Attribute Name and Description Access Data Type

qtssRTSPReqFullRequest
The complete RTSP request as sent by the
client. This attribute is available in every
role that receives an object of type
QTSS_RTSPRequestObject.

Readable,
preemptive safe

char

qtssRTSPReqMethodStr
The RTSP method of this request.

Readable,
preemptive safe

char

qtssRTSPReqFilePath
URI for this request, converted to a local
file system path.

Readable,
preemptive safe

char

qtssRTSPReqURI
URI for this request.

Readable,
preemptive safe

char

qtssRTSPReqFilePathTrunc
Same as qtssRTSPReqFilePath, but without
the last element of the path.

Readable,
preemptive safe

char

qtssRTSPReqFileName
All characters after the last path separator
in the file system path.

Readable,
preemptive safe

char

qtssRTSPReqFileDigit
If the URI ends with one or more digits,
this attribute points to those digits.

Readable,
preemptive safe

char

qtssRTSPReqAbsoluteURL
The full URL starting with “rtsp://”.

Readable,
preemptive safe

char

qtssRTSPReqTruncAbsoluteURL
The URL without last element of the path.

Readable,
preemptive safe

char

qtssRTSPReqMethod
The RTSP method as a value of type
QTSS_RTSPMethod.

Readable,
preemptive safe

QTSS_RTSPMethod

102
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssRTSPReqStatusCode
The current status code for the request as
QTSS_RTSPStatusCode. By default, the value
is qtssSuccessOK. If a module sets this
attribute and calls QTSS_SendRTSPHeaders,
the status code in the header that the
server generates contains the value of this
attribute.

Readable,
writable,
preemptive safe

QTSS_RTSPStatusCode

qtssRTSPReqStartTime
The start time specified in the Range
header of the PLAY request.

Readable,
preemptive safe

Float64

qtssRTSPReqStopTime
The stop time specified in the Range
header of the PLAY request.

Readable,
preemptive safe

Float64

qtssRTSPReqRespKeepAlive
Set this attribute to true if you want the
server to keep the connection open after
completion of the request. Otherwise, set
this attribute to false if you want the
server to terminate the connection upon
completion of the request.

Readable,
writable,
preemptive safe

Bool16

qtssRTSPReqRootDir
The root directory for this request. The
default value for this attribute is the
server's media folder path. Modules can
set this attribute from the RTSP Route role.

Readable,
writable,
preemptive safe

char

qtssRTSPReqRealStatusCode
Same as the qtssRTSPReqStatusCode
attribute but translated from a
QTSS_RTSPStatusCode to an actual RTSP
status code.

Readable,
preemptive safe

UInt32

Table 2-19 Attributes of type qtssRTSPRequestObjectType (continued)

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

103
  Apple Computer, Inc. August 29, 2003

qtssRTSPReqStreamRef
A value of type QTSS_StreamRef for
sending data to the RTSP client. This
stream reference, unlike the one provided
as an attribute in the
QTSS_RTSPSessionObject, never returns
QTSS_WouldBlock in response to a
QTSS_Write or a QTSS_WriteV call.

Readable,
preemptive safe

QTSS_StreamRef

qtssRTSPReqUserName
The decoded user name, if provided by the
RTSP request.

Readable,
preemptive safe

char

qtssRTSPReqURLRealm
The authorization entity for the client to
display in the following string: “Please
enter password for realm at server-name.
The default value of this attribute is
“Streaming Server.”

Readable,
writable,
preemptive safe

char

qtssRTSPReqIfModSinceDate
If the RTSP request contains an
If-Modified-Since header, this attribute is
the if-modified date converted to a value
of type QTSS_TimeVal.

Readable,
preemptive safe

QTSS_TimeVal

qtssRTSPReqRespMsg
The error message that is sent back to the
client if the response was an error. A
module sending an RTSP error to the
client should set this attribute to be a text
message that describes why the error
occurred. It is also useful to write this
message to a log file. Once the RTSP
response has been sent, this attribute
contains the response message.

Readable,
writable,
preemptive safe

char

qtssRTSPReqContentLen
Content length of incoming RTSP request
body.

Readable,
preemptive safe

UInt32

Table 2-19 Attributes of type qtssRTSPRequestObjectType (continued)

Attribute Name and Description Access Data Type

104
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssRTSPSessionObjectType
An object of type qtssRTSPSessionObjectType consists of attributes associated with
an RTSP client-server connection. An RTSP session object (QTSS_RTSPSessionObject)
is an instance of this object type and exists as long as the RTSP client is connected to
the server. These attributes are valid for all roles that receive a
QTSS_RTSPSessionObject in the structure the server passes to them.

Table 2-20 lists the attributes for objects of type qtssRTSPSessionObjectType.

qtssRTSPReqSpeed
Value of the speed header.

Readable,
preemptive safe

Float32

qtssRTSPReqLateTolerance
Value of the late-tolerance field in the
x-RTP-Options header, or –1 if not present.

Readable,
preemptive safe

Float32

qtssRTSPReqSkipAuthorization
Set by a module that wants this request to
be allowed by all authorization modules.

Readable,
writable,
preemptive safe

Bool16

qtssRTSPReqNetworkMode
Network mode for the request. Possible
values are qtssRTPNetworkModeDefault,
qtssRTPNetworkModeMulticast, and
qtssRTPNetworkModeUnicast.

Readable,
preemptive safe

Bool16

Table 2-19 Attributes of type qtssRTSPRequestObjectType (continued)

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

105
  Apple Computer, Inc. August 29, 2003

Note: All of these attributes are preemptive safe, so they can
be read by calling QTSS_GetValue, QTSS_GetValueAsString, or
QTSS_GetValuePtr.

Table 2-20 Attributes of objects of type qtssRTSPSessionObjectType

Attribute Name and Description Access Data Type

qtssRTSPSesID
An ID that uniquely identifies each RTSP
session since the server started up.

Readable,
preemptive safe

UInt32

qtssRTSPSesLocalAddr
Local IP address for this RTSP session.

Readable,
preemptive safe

UInt32

qtssRTSPSesLocalAddrStr
Local IP address for the RTSP session in
dotted-decimal format.

Readable,
preemptive safe

char

qtssRTSPSesLocalDNS
DNS name that corresponds to the local IP
address for this RTSP session.

Readable,
preemptive safe

char

qtssRTSPSesRemoteAddr
IP address of the client.

Readable,
preemptive safe

UInt32

qtssRTSPSesRemoteAddrStr
IP address of the client in dotted-decimal
format.

Readable,
preemptive safe

char

qtssRTSPSesEventCntxt
An event context for the RTCP connection
to the client. This attribute should
primarily be used to wait for
flow-controlled EV_WR event when
responding to a client.

Readable,
preemptive safe

QTSS_EventContextRef

qtssRTSPSesType
The RTSP session type. Possible values are
qtssRTSPSession, qtssRTSPHTTPSession (an
HTTP tunneled RTSP session), and
qtssRTSPHTTPInputSession. Sessions of
type qtssRTSPHTTPInputSession are
usually very short lived.

Readable,
preemptive safe

QTSS_RTSPSessionType

106
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssServerObjectType
An object of type qtssServerObjectType consists of attributes that contain global
server information, such as server statistics. A server object (QTSS_ServerObject) is
an instance of this object type. There is a single instance of this object type for
each server. These attributes are valid for all roles that receive a QTSS_ServerObject
in the structure the server passes to them.

Table 2-21 lists the attributes for objects of type qtssServerObjectType.

qtssRTSPSesStreamRef
A QTSS_StreamRef used for sending data to
the RTSP client.

Readable,
preemptive safe

QTSS_RTSPSessionStream

qtssRTSPSesLocalPort
Local port for the connection.

Readable,
preemptive safe

UInt16

qtssRTSPSesRemotePort
Remote (client) port for the connection.

Readable,
preemptive safe

UInt16

Table 2-20 Attributes of objects of type qtssRTSPSessionObjectType

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

107
  Apple Computer, Inc. August 29, 2003

Note: Some of these attributes are not preemptive safe, as
noted in Table 2-21.

Table 2-21 Attributes of objects of type qtssServerObjectType

Attribute Name and Description Access Data Type

qtssServerAPIVersion
The API version supported by this server.
The format of this value is
0xMMMMmmmm, where M is the major
version number and m is the minor
version number.

Readable,
preemptive safe

UInt32

qtssSvrDefaultDNSName
The “default” DNS name of the server.

Readable,
preemptive safe

char

qtssSvrDefaultIPAddr
The “default” IP address of the server.

Readable,
preemptive safe

UInt32

qtssSvrServerName
The name of the server.

Readable,
preemptive safe

char

qtssSvrServerVersion
The version of the server.

Readable,
preemptive safe

char

qtssSvrServerBuildDate
Date that the server was built.

Readable,
preemptive safe

char

qtssSvrRTSPServerHeader
The header that the server uses when
responding to RTSP clients.

Readable,
preemptive safe

char

qtssSvrConnectedUsers
The number of connected clients. The
QTSSMP3StreamingModule is the only
module that adds
QTSS_ConnectedUserObject objects to this
attribute, but other modules can add
QTSS_ConnectedUserObject objects filled in
with their own data.

Readable,
writable,
not preemptive
safe

QTSS_ConnectedUserObject

qtssMP3SvrCurConn
Number of currently connected MP3 client
sessions.

Readable,
writable,
preemptive safe

UInt32

108
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssMP3TotalConn
Total number of MP3 client sessions since
the server started up.

Readable,
writable,
preemptive safe

UInt32

qtssMP3SvrCurBandwidth
MP3 bandwidth in bits per second that the
server is currently sending.

Readable,
writable,
preemptive safe

UInt32

qtssMP3SvrTotalBytes
Total number of MP3 bytes sent since the
server started up.

Readable,
writable,
preemptive safe

UInt32

qtssMP3SvrAvgBandwidth
Average MP3 bandwidth in bits per
second that the server is currently sending.

Readable,
writable,
preemptive safe

UInt32

qtssSvrState
The current state of the server. Possible
values are qtssStartingUpState,
qtssRunningState,
qtssRefusingConnectionsState,
qtssFatalErrorState, and
qtssShuttingDownState,qtssIdleState.

Modules can set the server state. If a
module sets the server state, the server
responds accordingly.
Setting the server state to
qtssRefusingConnectionsState causes the
server to refuse new connections.
Setting the server state to
qtssFatalErrorState or to
qtssShuttingDownState causes the server to
quit. The qtssFatalErrorState state
indicates that a fatal error has occurred but
the server is not shutting down yet.

Readable,
writable,
not preemptive
safe

QTSS_ServerState

qtssSvrRTSPPorts
An indexed attribute containing all the
ports the server is listening on.

Readable,
not preemptive
safe

char

Table 2-21 Attributes of objects of type qtssServerObjectType (continued)

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

109
  Apple Computer, Inc. August 29, 2003

qtssSvrIsOutOfDescriptors
If the server has run out of file descriptors,
this attribute is true; otherwise, this
attribute is false.

Readable,
not preemptive
safe

Bool16

qtssRTSPCurrentSessionCount
The number of clients that are currently
connected over standard RTSP.

Readable,
not preemptive
safe

UInt32

qtssRTSPHTTPCurrentSessionCount
The number of clients that are currently
connected over RTSP/HTTP.

Readable,
not preemptive
safe

UInt32

qtssRTPSvrNumUDPSockets
Number of UDP sockets currently being
used by the server.

Readable,
not preemptive
safe

UInt32

qtssRTPSvrCurConn
The number of clients currently connected
to the server.

Readable,
not preemptive
safe

UInt32

qtssRTPSvrTotalConn
Total number of clients that have
connected to the server since the server
started up.

Readable,
not preemptive
safe

UInt32

qtssRTPSvrCurBandwidth
Current bandwidth being output by the
server in bits per second.

Readable,
not preemptive
safe

UInt32

qtssRTPSvrTotalBytes
Total number of bytes output since the
server started up.

Readable,
not preemptive
safe

UInt64

qtssRTPSvrAvgBandwidth
Average bandwidth output by the server
in bits per second.

Readable,
not preemptive
safe

UInt32

qtssRTPSvrCurPackets
Current packets per second being output
by the server.

Readable,
not preemptive
safe

UInt32

Table 2-21 Attributes of objects of type qtssServerObjectType (continued)

Attribute Name and Description Access Data Type

110
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssRTPSvrTotalPackets
Total number of bytes output since the
server started up.

Readable,
not preemptive
safe

UInt64

qtssSvrHandledMethods
The methods that the server supports.
Modules should append the methods they
support to this attribute in their
QTSS_Initialize_Role.

Readable,
writable,
not preemptive
safe

QTSS_RTSPMethod

qtssSvrCurrentTimeMilliseconds
The server’s current time in milliseconds.
Getting the value of this attribute is
equivalent to calling QTSS_Milliseconds.

Readable,
not preemptive
safe

QTSS_TimeVal

qtssSvrCPULoadPercent
The percentage of CPU time the server is
currently using.

Readable,
not preemptive
safe

Float32

qtssSvrModuleObjects
A module object representing each
module.

Readable,
preemptive safe

QTSS_ModuleObject

qtssSvrStartupTime
The time at which the server started up.

Readable,
preemptive safe

QTSS_TimeVal

qtssSvrGMTOffsetInHrs
The time zone in which the server is
running (offset from GMT in hours).

Readable,
preemptive safe

SInt32

qtssSvrDefaultIPAddrStr
The default IP address of the server as a
string.

Readable,
preemptive safe

char

Table 2-21 Attributes of objects of type qtssServerObjectType (continued)

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

111
  Apple Computer, Inc. August 29, 2003

qtssTextMessageObjectType
An object of type qtssTextMessageObjectType consists of attributes whose values are
intended for display to the user or that are returned to the client. A text message
object (QTSS_TextMessageObject) is an instance of this object type. To make
localization easier, the attribute values are text strings.

Table 2-22 lists the attributes for objects of type qtssTextMessageObjectType.

qtssSvrPreferences
An object representing each of the server's
preferences.

Readable,
preemptive safe

QTSS_PrefsObject

qtssSvrClientSessions
An object containing all client sessions
stored as indexed
QTSS_ClientSessionObject objects.

Read QTSS_Object

qtssSvrMessages
An object containing the server's error
messages.

Readable,
preemptive safe

QTSS_Object

Table 2-22 Attributes of objects of type qtssTextMessageObjectType

Attribute Name and Description Access Data Type

qtssMsgNoMessage
No message.

Read only,
preemptive safe

char

qtssMsgNoURLInRequest
Request did not contain a URL.

Read only,
preemptive safe

char

qtssMsgBadRTSMethod
Request specified an invalid RTS method.

Read only,
preemptive safe

char

qtssMsgNoRTSPVersion
Request did not specify an RTSP version.

Read only,
preemptive safe

char

Table 2-21 Attributes of objects of type qtssServerObjectType (continued)

Attribute Name and Description Access Data Type

112
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssMsgNoRTSPInURL
Request specifed a URL that does not
support RTSP.

Read only,
preemptive safe

char

qtssMsgURLTooLong
Request contains a URL that is longer than
256 bytes.

Read only,
preemptive safe

char

qtssMsgURLInBadFormat
Request specifed a URL that is properly
formatted.

Read only,
preemptive safe

char

qtssMsgColonAfterHeader
Request’s header is not followed by a
colon (:) character .

Read only,
preemptive safe

char

qtssMsgNoEOLAfterHeader
Request’s header is not terminated by an
end of line character .

Read only,
preemptive safe

char

qtssMsgRequestTooLong
Request is too long.

Read only,
preemptive safe

char

qtssMsgNoModuleFolder
The server could not find the module
folder.

Read only,
preemptive safe

char

qtssMsgCouldntListen
This text message is not used.

Read only,
preemptive safe

char

qtssMsgInitFailed
The server could not initialize itself.

Read only,
preemptive safe

char

qtssMsgNotConfiguredForIP
The server is not configured for IP.

Read only,
preemptive safe

char

qtssMsgDefaultRTSPAddrUnavail
The IP address specified by the
qtssPrefsRTSPIPAddr attribute could not be
found or failed in some way.

Read only,
preemptive safe

char

qtssMsgBadModule
The server tried to run an invalid module.

Read only,
preemptive safe

char

Table 2-22 Attributes of objects of type qtssTextMessageObjectType

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

113
  Apple Computer, Inc. August 29, 2003

qtssMsgRegFailed
A module failed to register.

Read only,
preemptive safe

char

qtssMsgRefusingConnections
The server is refusing connections.

Read only,
preemptive safe

char

qtssMsgTooManyClients
The server has too many connections to
accept this connection.

Read only,
preemptive safe

char

qtssMsgTooMuchThroughput
The server is consuming too much
bandwidth to accept this request.

Read only,
preemptive safe

char

qtssMsgNoSessionID
Request does not contain a session ID.

Read only,
preemptive safe

char

qtssMsgFileNameTooLong
Request contains a file name that is too
long.

Read only,
preemptive safe

char

qtssMsgNoClientPortInTransport
Request contains a transport header that
does not specify the client’s port number.

Read only,
preemptive safe

char

qtssMsgRTPPortMustBeEven
Request contains an RTP port number that
is odd instead of even.

Read only,
preemptive safe

char

qtssMsgRTCPPortMustBeOneBigger
Request contains an RTCP port number
that is not bigger than the RTP port
number by 1.

Read only,
preemptive safe

char

qtssMsgOutOfPorts
The server could not accept the request
because it is out of ports.

Read only,
preemptive safe

char

qtssMsgNoModuleForRequest
Request specifies a module the server does
not have.

Read only,
preemptive safe

char

Table 2-22 Attributes of objects of type qtssTextMessageObjectType

Attribute Name and Description Access Data Type

114
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

qtssMsgAltDestNotAllowed
Request specifies an alternative
destination and the server is not
configured to support alternative
destinations.

Read only,
preemptive safe

char

qtssMsgCantSetupMulticast
Server is not configured for multicast.

Read only,
preemptive safe

char

qtssListenPortInUse Read only,
preemptive safe

char

qtssListenPortAccessDenied Read only,
preemptive safe

char

qtssListenPortError Read only,
preemptive safe

char

qtssMsgBadBase64 Read only,
preemptive safe

char

qtssMsgSomePortsFailed Read only,
preemptive safe

char

qtssMsgNoPortsSucceeded
)

Read only,
preemptive safe

char

qtssMsgCannotCreatePIDFile
The server could not create the process ID
file. See the qtssPrefsPIDFile attribute of
the qtssPrefsObjectType described in
Table 2-17 (page 80).

Read only,
preemptive safe

char

qtssMsgCannotSetRunUser
The server could not run under the user
name specified by the qtssPrefsRunUser
attribute of the qtssPrefsObjectType
described in Table 2-17 (page 80).

Read only,
preemptive safe

char

qtssMsgCannotSetRunGroup
The server could not run under the group
name specified by the qtssPrefsRunGroup
attribute of the qtssPrefsObjectType
described in Table 2-17 (page 80).

Read only,
preemptive safe

char

Table 2-22 Attributes of objects of type qtssTextMessageObjectType

Attribute Name and Description Access Data Type

C H A P T E R 2

Concepts

115
  Apple Computer, Inc. August 29, 2003

qtssUserProfileObjectType
An object of type qtssUserProfileObjectType consists of attributes whose values
describe a user’s profile.

qtssMsgNoSesIDOnDescribe
The Describe section of the request’s
header does not contain a session ID.

Read only,
preemptive safe

char

qtssServerPrefMissing
A required server preference is missing
from the server’s configuration.

Read only,
preemptive safe

char

qtssServerPrefWrongType
A required server preference is of the
wrong type.

Read only,
preemptive safe

char

qtssMsgCantWriteFile Read only,
preemptive safe

char

qtssMsgSockBufSizesTooLarge Read only,
preemptive safe

char

qtssMsgBadFormat
The server could not parse the request.

Read only,
preemptive safe

char

Table 2-22 Attributes of objects of type qtssTextMessageObjectType

Attribute Name and Description Access Data Type

116
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Table 2-23 lists the attributes for objects of type qtssUserProfileObjectType.

QTSS Streams

The QTSS programming interface provides QTSS stream references as a generalized
stream abstraction. Streams can be used for reading and writing data to many types
of I/O sources, including, but not limited to files, the error log, and sockets and for
communicating with the client via RTSP or RTP. In all RTSP roles, for example,
modules receive an object of type QTSS_RTSPRequestObject that has a
qtssRTSPReqStreamRef attribute. The value of this attribute is of type
QTSS_StreamRef, and it can be used for sending RTSP response data to the client.

Unless otherwise noted, all streams are asynchronous. When using the
asynchronous QTSS file system callbacks, modules should be prepared to receive
the QTSS_WouldBlock result code, subject to the restrictions and rules of each stream

Table 2-23 Attributes of objects of type qtssUserProfileObjectType

Attribute Name and Description Access Data Type

qtssUserName
The user’s name.

Readable,
preemptive safe

char

qtssUserPassword
The user’s password.

Readable,
writable
preemptive safe

char

qtssUserGroups
Groups of which the user is a member.
Thisis a multi-valued attribute. Each
group name is a C strings padded with
enough \0s to make all of the group
names the same length.

Readable,
writable
preemptive safe

char

qtssUserRealm
Authentication realm for this user.

Readable,
writable
preemptive safe

char

C H A P T E R 2

Concepts

117
  Apple Computer, Inc. August 29, 2003

type described in this section. The QTSS_WouldBlock error is returned from a stream
callback when completing the requested operation would require the current
thread to block. For instance, QTSS_Write on a socket will return QTSS_WouldBlock if
the socket is currently subject to flow control. For information on threading and
asynchronous I/O, see the section “Runtime Environment for QTSS Modules”
(page 38).

When a module receives the QTSS_WouldBlock result code, modules should call the
QTSS_RequestEvent callback routine to request a notification from the server when
the specified stream becomes available for I/O. After calling QTSS_RequestEvent, the
module should return control immediately to the server. The module will be
re-invoked in the same role in the exact same state when the specified stream is
available for I/O.

All stream references are of type QTSS_StreamRef. The QTSS programming interface
uses following stream types:

QTSS_ErrorLogStream

Used for writing binary data to the server’s error log. There is a
single instance of this stream type, which is passed to each module
in the Initialize role. When data is written to this stream, modules
that have registered for the Error Log role are invoked. For
information about this role, see the section “Error Log Role”
(page 44). All operations on this stream type are synchronous.

QTSS_FileStream

Represents a file and is obtained by making the QTSS_OpenFileStream
callback. If the file stream is opened with the qtssFileStreamAsync
flag, callers should expect to receive a result code of QTSS_WouldBlock
when they call QTSS_Read, QTSS_Write, and QTSS_WriteV.

QTSS_RTSPSessionStream

Used for reading data (QTSS_Read) from an RTSP client and writing
data (QTSS_Write or QTSS_WriteV) to an RTSP client. The server may
encounter flow control conditions, so modules should be prepared to
handle QTSS_WouldBlock result codes when reading from or writing
to this stream type. Calling QTSS_Read means that you are reading the
request body sent by the client to the server. This stream reference is
an attribute of the object QTSS_RTSPSessionObject.

118
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

QTSS_RTSPRequestStream

Used for reading data (QTSS_Read) from an RTSP client and writing
data (QTSS_Write or QTSS_WriteV) to an RTSP client. This stream is
identical to the QTSS_RTSPSessionStream stream except that data
written to streams of this type is buffered in memory until a full
RTSP response is constructed. Because the data is buffered
internally, modules do not receive QTSS_WouldBlock errors when
writing to streams of this type. Calling QTSS_Read on this type of
stream means that you are reading the request body sent by the client
to the server. Modules that call QTSS_Read to read this type of
stream should be prepared to handle a result code of
QTSS_WouldBlock. This stream reference is an attribute of the object
QTSS_RTSPRequestObject.

QTSS_RTPStreamStream

Used for writing data to an RTP client. When writing to a stream of
this type, a single write call corresponds to a single, complete RTP
packet, including headers. Currently, it is not possible to use the
QTSS_RequestEvent callback to receive events for this stream, so if
QTSS_Write or QTSS_WriteV returns QTSS_WouldBlock, modules must
poll periodically for the blocking condition to be lifted. This stream
reference is an attribute of the object QTSS_RTPStreamObject.

QTSS_SocketStream

Represents a socket. This stream type allows modules to use the
QTSS stream event mechanism (QTSS_RequestEvent) for raw socket I/
O. (In fact, the QTSS_RequestEvent callback is the only stream callback
available for this type of stream.) Modules should read sockets
asynchronously and should use the operating system’s socket
function to read from and write to sockets. When those routines
reach a blocking condition, the module can call QTSS_RequestEvent to
be notified when the blocking condition has cleared.

C H A P T E R 2

Concepts

119
  Apple Computer, Inc. August 29, 2003

Table 2-24 uses an “X” to summarize the I/O-related callback routines that are
appropriate for each type of stream.

QTSS Services

QTSS services are services the modules can access. The service may be a built-in
service provided by the server or an added service provided by another module. An
example of a service would be a logging module that allows other modules to write
messages to the error log.

Modules use the callback routines described in the section “Service Callback
Routines” (page 232) to register and invoke services. Modules add and find services
in a way that is similar to the way in which they add and find attributes of an object.

Table 2-24 Streams and appropriate callback routines

Stream
Type Read Seek Flush Advise Write WriteV

Request
Event

Signal
Stream

File
Stream

X X X X X

Error
Log

X

Socket
Stream

X

RTSP
Session
Stream

X X X X X

RTSP
Request
Stream

X X X X X

RTP
Stream

X X X X

120
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Every service has a name. To invoke a service, the calling module must know the
name of the service and resolve that name into an ID.

Each service has its own specific parameter block format. Modules that export
services should carefully document the services they export. Modules that call
services should fail gracefully if the service isn’t available or returns an error.

A module that implements a service calls QTSS_AddService in its Register role to add
the service to the server’s internal database of services, as shown in the following
code:

void MyAddService()

{

QTSS_Error theErr = QTSS_AddService("MyService", &MyServiceFunction);

}

The MyServiceFunction corresponds to the name of a function that must be
implemented in the same module. Here is a stub implementation of the
MyServiceFunction:

QTSS_Error MyServiceFunction(MyServiceArgs* inArgs)

{

// Each service function must take a single void* argument

 // Implement the service here.

// Return a QTSS_Error.

}

To use a service, a module must get the service’s ID by calling QTSS_IDForService
and providing the name of the service as a parameter. With the service’s ID, the
module calls QTSS_DoService to cause the service to run, as shown in Listing 2-1.

Listing 2-1 Starting a service

void MyInvokeService()

{

// Service functions take a single void* parameter that corresponds

// to a parameter block specific to the service.

C H A P T E R 2

Concepts

121
  Apple Computer, Inc. August 29, 2003

MyServiceParamBlock theParamBlock;

// Initialize service-specific parameters in the parameter block.

theParamBlock.myArgument = xxx;

QTSS_ServiceID theServiceID = qtssIllegalServiceID;

// Get the service ID by providing the name of the service.

QTSS_Error theErr = QTSS_IDForService(‘MyService’, &theServiceID);

if (theErr != QTSS_NoErr)

return; // The service isn’t available.

// Run the service.

theErr = QTSS_DoService(theServiceID, &theParamBlock);

}

Built-in Services
The QuickTime Streaming Server provides built-in services that modules may
invoke using the service routines. In this version of the QTSS programming
interface, there is one built-in service:

#define QTSS_REREAD_PREFS_SERVICE "RereadPreferences"

Invoking the Reread Preferences service causes the server to reread its preferences
and invoke each module in the Reread Preferences role, if they have registered for
that role.

To invoke a built-in service, retrieve the service ID of the service by calling
QTSS_IDForService. Then call QTSS_DoService to run the service.

Automatic Broadcasting

The Streaming Server can accept RTSP ANNOUNCE requests from QuickTime
broadcasters. Support for ANNOUNCE requests and the ability of the server to act
as an RTSP client allow the server to initiate new relay sessions. This section
describes the two ways in which an automatic broadcast can be initiated, how
ANNOUNCE requests work with SDP, and how the qtaccess and qtusers files
control automatic broadcasting.

122
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Automatic Broadcasting Scenarios
QTSS supports two automatic broadcasting scenarios:

� Pull then push. To initiate automatic broadcast, an RTSP client sends standard
RTSP requests to request a stream and the server then relays the stream to one
or more other streaming servers. This scenario is described in the section “Pull
Then Push” (page 122).

� Listen then push. In this scenario, an automatic broadcast is initiated when the
streaming server receives an ANNOUNCE request. This scenario is described in
the section “Listen Then Push” (page 123).

Pull Then Push

The user can request a stream from a remote source by making standard
DESCRIBE/SETUP/PLAY requests and then relay it to one or more destinations.
This functionality can be useful when an organization only wants one copy of an
outside stream to consume bandwidth on its Internet connection. The relay would
sit just inside the corporate network and push the stream to a reflector (possibly
itself). Figure 2-7 provides an example of the pull-then-push scenario.

Figure 2-7 Pull-then-push automatic broadcasting

Using Figure 2-7 as a reference, the steps for the pull-then-push scenario are as
follows:

Streaming
Server B

Streaming
Server

Streaming
Server

2. ANNOUNCE

Streaming
Server A

1. DESCRIBE/SETUP/PLAY

C H A P T E R 2

Concepts

123
  Apple Computer, Inc. August 29, 2003

1. Streaming Server A (the relay client) sends standard RTSP client DESCRIBE/
SETUP/PLAY requests to a remote server, Streaming Server B.

2. The relay “client” (Streaming Server A) that requested the stream will begin
receiving it and then send an ANNOUNCE to all of the destinations listed in the
relay configuration for that particular incoming stream.

Listen Then Push

The streaming server can be configured to send incoming streams created by an
ANNOUNCE request to one or more destination machines automatically. This can
be useful for setting up an automated broadcast network. Figure 2-8 provides an
example of the pull-then-push scenario.

Figure 2-8 Listen-then-push automatic broadcasting

Using Figure 2-8 as a reference, the steps for the listen -then-push scenario are as
follows:

� A remote machine (a broadcaster or a relay) sends an ANNOUNCE request to
Streaming Server A. The streaming server may accept or deny the request. If it
accepts the request, the streaming server checks its relay configuration to
determined whether the stream should be relayed.

� If the stream should be relayed, the streaming server will send standard RTSP
client DESCRIBE/SETUP/PLAY request to itself.

Streaming
Server

Streaming
Server

3. ANNOUNCE

Streaming
Server A

1. ANNOUNCE

2. DESCRIBE/SETUP/PLAY

Broadcaster

124
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

� The relay “client” (Streaming Server A) that requested the stream will begin
receiving it and then send an ANNOUCE to all of the destinations listed in its
relay configuration for that particular incoming stream.

By default, authentication is required for automatic broadcasts. ANNOUNCE
requests from broadcasters are filtered through the authentication mechanism
active in the server. To support broadcast authentication, a new WRITE directive
has been added to qtaccess file. The new directive allows SDP files to be written to
the movies folder.

ANNOUNCE Requests and SDP
The ANNOUNCE request contains the Session Description Protocol (SDP)
information for the broadcast. The ANNOUNCE request’s URI value may contain
path delimiters in order to provide name space functionality.

When a broadcast is initiated by an ANNOUNCE request, the SDP information is
stored in an in-memory broadcast list. To terminate a broadcast, the broadcaster
sends to the server a TEARDOWN request, which causes the server to close the
broadcast session and discard the SDP information. Similarly, dropped RTSP
connections and broadcasters that do no send RTCP sender reports to the server
within a 90-second window cause the server to close the broadcast session and
discard the SDP information.

To support multiple SDP references to the same broadcast for announced UDP and
TCP broadcasts, the port setting is zero in the ANNOUNCE header. Here is an
example:

m=audio 0 RTP/AVP

The a=x-urlmap tag is required to support sharing streams between broadcasts
(where one stream comes from one broadcaster and another stream comes from
another broadcaster). The a=x-urlmap tag should appear in the SDP that references
the source SDP. Here is an example:

a=x-urlmap: someotherbroadcastURL/TrackID=1

C H A P T E R 2

Concepts

125
  Apple Computer, Inc. August 29, 2003

Access Control of Announced Broadcasts
To control automatic broadcasting, two new user tags have been defined in the
qtaccess file. Table 2-25 lists the new tags.

By default, the qtaccess file allows read access for all directives in the file. To allow
announced broadcasts, the qtaccess file must contain a Limit directive that allows
writing.

The purpose of the Limit directive is to restrict the effect of access controls to RTSP
readers or writers. The following example limits the require access control so that
only users defined in the qtusers file can RTSP PLAY a broadcast to the server. All
other normal client PLAY requests are available to any user:

<Limit WRITE>

require valid-user

</Limit>

Note: The termination of the Limit directive (</Limit>) must
be placed on its own line.

The following example allows movie viewing by any user in the qtusers file that is
in the movie_watchers group and the user john. Broadcasters must be in the
movie_broadcasters group to broadcast to this directory or its protected branches.

<Limit READ>

require group movie_watchers

require user john

Table 2-25 Access control user tags

Tag Purpose

valid-user Specifies that the user can have access to the requested
movie if the client provides a name and password that
match an entry in the qtusers file. The tag is written as
require valid-user.

any-user Specifies that any user can have access to the requested
movie, with no requirement that the user be defined in the
qtusers file or that the client provide a name and
password that is checked. The tag is written as require
any-user.

126
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

</Limit>

<Limit WRITE>

require group movie_broadcasters

</Limit>

Note: Strings in the qtaccess file are case-sensitive.

The following example has the same effect as the previous example. It works
because the default behavior is to limit access to reading when no limit field is
specified.

require group movie_watchers

<Limit WRITE>

require group movie_broadcasters

</Limit>

require user john

The following example allows movie viewing and broadcasting by any user in the
qtusers file that is in the movie_watchers_and_broadcasters group:

<Limit READ WRITE>

require group movie_watchers_and_broadcasters

</Limit>

Broadcaster-to-Server Example
This section shows a typical exchange between a client and a server in order to
initiate an announced broadcast. The following example shows a UDP multicast.
Announced broadcasts can also set up requests with using unicast RTP/AVP/UDP
streams as well as RTP/AVP/TCP interleaved streams. For more information, see
RFC 2326.

Client to server:

ANNOUNCE rtsp://server.example.com/meeting RTSP/1.0

CSeq: 90

Content-Type: application/sdp

Content-Length: 121

v=0

o=camera1 3080117314 3080118787 IN IP4 195.27.192.36

C H A P T E R 2

Concepts

127
  Apple Computer, Inc. August 29, 2003

s=IETF Meeting, Munich - 1

i=The thirty-ninth IETF meeting will be held in Munich, Germany

u=http://www.ietf.org/meetings/Munich.html

e=IETF Channel 1 <ietf39-mbone@uni-koeln.de>

p=IETF Channel 1 +49-172-2312 451

c=IN IP4 224.0.1.11/127

t=3080271600 3080703600

a=tool:sdr v2.4a6

a=type:test

m=audio 0 RTP/AVP 5

a=control:trackID=1

c=IN IP4 224.0.1.11/127

a=ptime:40

m=video 0 RTP/AVP 31

a=control:trackID=2

c=IN IP4 224.0.1.12/127

Server to client:

RTSP/1.0 200 OK

CSeq: 90

Client to server:

SETUP rtsp://server.example.com/meeting/trackID=1 RTSP/1.0

CSeq: 91

Transport: RTP/AVP;multicast;destination=224.0.1.11;

client_port=21010-21011;mode=record;ttl=127

Server to client:

RTSP/1.0 200 OK

CSeq: 91

Session: 50887676

Transport: RTP/AVP;multicast;destination=224.0.1.11;

client_port=21010-21011;serverport=6000-6001;mode=receive;ttl=127

Client to server:

SETUP rtsp://server.example.com/meeting/trackID=2 RTSP/1.0

CSeq: 92

Session: 50887676

128
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Transport: RTP/AVP;multicast;destination=224.0.1.12;

client_port =61010-61011;mode=record;ttl=127

Server to client:

RTSP/1.0 200 OK

CSeq: 92

Transport: RTP/AVP;multicast;destination=224.0.1.12;

client_port =61010-61011;serverport=6002-6003;mode=record;ttl=127

Client to server:

RECORD rtsp://server.example.com/meeting RTSP/1.0

CSeq: 93

Session: 50887676

Server to client:

RTSP/1.0 200 OK

CSeq: 93

Additional Trace Examples
This section provides three traces. The first trace is from the QuickTime
Broadcaster, and it is sending MPEG 4 streams using TCP. The second trace is also
from the QuickTime Broadcaster, but it is using UDP. The third trace is from RFC
2326 (RTSP) showing the ANNOUNCE and RECORD RTSP methods using UDP
transport.

The broadcaster requests to notice are

� RTSP ANNOUNCE to send the SDP file to the server

� RTSP SETUP to send a Transport header setting mode=record; the direction of the
stream is implicitly from the perspective of the server

� RTSP RECORD to start the broadcast

The requests mirror the streaming client requests:

� RTSP DESCRIBE to receive the SDP file from the server

� RTSP SETUP to set up each stream

C H A P T E R 2

Concepts

129
  Apple Computer, Inc. August 29, 2003

� RTSP PLAY to start the streams

Trace of QuickTime Broadcaster Using TCP

Here is a trace of a QuickTime Broadcaster sending MPEG 4 streams using TCP. A
TCP connection uses the same set of RTSP requests with the standard specified
transport of RTP/AVP/TCP and the port identifier of interleaved= for each stream.

For this example, authentication and authorization has been disabled by a qtaccess
file to allow any user to annouce a broadcast. The broadcast file is relative to the
movies directory. If an SDP file already exists for the URL, it is replaced. Clients that
are already connected to the URL are not updated with the new SDP as doing so
would require a new DESCRIBE from the client, and there currently is no way to
notify clients of the SDP change.

Client to server:

ANNOUNCE rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 1\r\n

Content-Type: application/sdp\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Content-Length: 790\r\n

\r\n

c=IN IP4

127.0.0.1\ra=x-qt-text-nam:test\ra=x-qt-text-cpy:apple\ra=x-qt-text-aut:john

\ra=x-qt-text-inf:none\ra=mpeg4-iod:"data:application/mpeg4-iod;base64,AoF/

AE8BAQEBAQOBEgABQHRkYXRhOmFwcGxpY2F0aW9uL21wZWc0LW9kLWF1O2Jhc2U2NCxBVGdC

R3dVZkF4Y0F5U1FBWlFRTklCRUFGM0FBQVBvQUFBRERVQVlCQkFFWkFwOERGUUJsQlFRTlFC

VUFCOUFBQUQ2QUFBQStnQVlCQXc9PQQNAQUAAMgAAAAAAAAAAAYJAQAAAAAAAAAAA2EAAkA+

ZGF0YTphcHBsaWNhdGlvbi9tcGVnNC1iaWZzLWF1O2Jhc2U2NCx3QkFTZ1RBcUJYSmhCSWhR

UlFVL0FBPT0EEgINAAAUAAAAAAAAAAAFAwAAQAYJAQAAAAAAAAAA"\ra=isma-

compliance:1,1.0,1\rm=audio 0 RTP/AVP 96\ra=rtpmap:96

X-QT/8000/1\ra=control:trackid=1\rm=video 0 RTP/AVP 97\ra=rtpmap:97

MP4V-ES\ra=fmtp:97

profile-level-id=1;config=000001B0F3000001B50EE040C0CF0000010000000120008440

FA285020F0

A31F\ra=mpeg4-esid:201\ra=cliprect:0,0,240,320\ra=control:trackid=2\r

Server to client:

130
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 1\r\n

\r\n

Client to server:

// The broadcaster is trying to determine if RECORD is supported. QTSS 4.0

used an Apple

// method of RECEIVE instead of the RECORD.

OPTIONS rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 2\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 2\r\n

Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE, ANNOUNCE, SET_PARAMETER,

RECORD\r\n

\r\n

Client to server:

// Here is the first setup with the transport defined from the client to the

// server. The URL is the same as when a client performs a setup requesting

// a stream. QTSS does not allow a SETUP on a stream that is already set up

// and will return an error. This can happen in two ways.

// 1) A broadcast software error that does not change the URL.

// 2) A broadcast dies without performing a teardown. In this case, the

// broadcast session has to timeout and die before another setup can occur.

// The server uses a short timeout of 20 seconds for broadcast sessions. The

// timeout is refreshed by any packet received from the broadcaster.

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=1 RTSP/1.0\r\n

CSeq: 3\r\n

Transport: RTP/AVP/TCP;unicast;mode=record;interleaved=0-1\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Accept-Language: en-US\r\n

\r\n

C H A P T E R 2

Concepts

131
  Apple Computer, Inc. August 29, 2003

Server to client:

// The server responds with the interleaved values. If the values conflict,

// the client will change them so each stream has a unique set of

// interleaved IDs.

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 3\r\n

Cache-Control: no-cache\r\n

Session: 6664885458621367225\r\n

Date: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Expires: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Transport: RTP/AVP/TCP;unicast;mode=record;interleaved=0-1\r\n

\r\n

Client to server:

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=2 RTSP/1.0\r\n

CSeq: 4\r\n

Transport: RTP/AVP/TCP;unicast;mode=record;interleaved=2-3\r\n

Session: 6664885458621367225\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Accept-Language: en-US\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 4\r\n

Session: 6664885458621367225\r\n

Cache-Control: no-cache\r\n

Date: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Expires: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Transport: RTP/AVP/TCP;unicast;mode=record;interleaved=2-3\r\n

\r\n

Client to server:

132
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

// This is the equivalent to a client PLAY request. The broadcaster is now

// starting the streams.

RECORD rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 5\r\n

Session: 6664885458621367225\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

\r\n

Server to client:

// RTCPs will be sent back on the channels to show the number of watching

// clients.

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 5\r\n

Session: 6664885458621367225\r\n

RTP-Info: url=trackid=1,url=trackid=2\r\n

\r\n

Client to server:

PAUSE rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 6\r\n

Session: 6664885458621367225\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 6\r\n

Session: 6664885458621367225\r\n

\r\n

Client to server:

// A TEARDOWN stops the broadcast streams. It does not stop the clients or

// their streams. By default, QTSS allows a restarted or different broadcaster

// to send to the same URL and the clients will receive the new streams. This

// can be both good and bad since the broadcaster can change the stream media

C H A P T E R 2

Concepts

133
  Apple Computer, Inc. August 29, 2003

// type on the clients. The streamingserver.xml file provides an attribute

// that allows the server to force clients to disconnect if the broadcaster

// disconnects. The broadcast receiver is recommended to have a way for an

// administrator or the broadcaster to tear down sessions that have failed.

// The server adds a 30 second timeout between SSRC values to prevent someone

// from pirating a stream. As long as a stream is playing with the initial

// SSRC, another stream arriving on the same ports will not be reflected to

// clients. Attempts to pirate a steam usually occur by accident when users

// manually set their SDP ports.

TEARDOWN rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 7\r\n

Session: 6664885458621367225\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

\r\n

Server to client:

// The server removes the SDP file from the movies directory on teardown or

// broadcaster timeout.

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 7\r\n

Session: 6664885458621367225\r\n

Connection: Close\r\n

\r\n

Trace of UDP Broadcast with Negotiated Server Ports

The only significant addition to RFC 2326 is that when receiving a broadcast over
UDP, the QuickTime server uses SETUP with mode=RECORD to generate and send
back to the client a UDP port to use when the SDP contains a port value of 0 for a
given stream. Otherwise, the server uses the SDP-defined port to receive the
streams. The server's receive port is declared in the SETUP response transport
header. The format looks exactly as if a client were performing a SETUP request for
a stream from the server and then receiving the port the server is sending from.

Client to server:

ANNOUNCE rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 1\r\n

Content-Type: application/sdp\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

134
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Content-Length: 790\r\n

\r\n

c=IN IP4

127.0.0.1\ra=x-qt-text-nam:test\ra=x-qt-text-cpy:apple\ra=x-qt-text-aut:john

\ra=x-qt-text-inf:none\ra=mpeg4-iod:"data:application/mpeg4-iod;base64,AoF/

AE8BAQEBAQOBEgABQHRkYXRhOmFwcGxpY2F0aW9uL21wZWc0LW9kLWF1O2Jhc2U2NCxBVGdC

R3dVZkF4Y0F5U1FBWlFRTklCRUFGM0FBQVBvQUFBRERVQVlCQkFFWkFwOERGUUJsQlFRTlFC

VUFCOUFBQUQ2QUFBQStnQVlCQXc9PQQNAQUAAMgAAAAAAAAAAAYJAQAAAAAAAAAAA2EAAkA+

ZGF0YTphcHBsaWNhdGlvbi9tcGVnNC1iaWZzLWF1O2Jhc2U2NCx3QkFTZ1RBcUJYSmhCSWhR

UlFVL0FBPT0EEgINAAAUAAAAAAAAAAAFAwAAQAYJAQAAAAAAAAAA"\ra=isma-

compliance:1,1.0,1\rm=audio 0 RTP/AVP 96\ra=rtpmap:96

X-QT/8000/1\ra=control:trackid=1\rm=video 0 RTP/AVP 97\ra=rtpmap:97

MP4V-ES\ra=fmtp:97

profile-level-id=1;config=000001B0F3000001B50EE040C0CF0000010000000120008440

FA285020F0

A31F\ra=mpeg4-esid:201\ra=cliprect:0,0,240,320\ra=control:trackid=2\r

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 1\r\n

\r\n

Client to server:

OPTIONS rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 2\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 2\r\n

Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE, ANNOUNCE, SET_PARAMETER,

RECORD\r\n

\r\n

Client to server:

C H A P T E R 2

Concepts

135
  Apple Computer, Inc. August 29, 2003

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=1 RTSP/1.0\r\n

CSeq: 3\r\n

Transport: RTP/AVP;unicast;client_port=6974-6975;mode=record\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Accept-Language: en-US\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 3\r\n

Cache-Control: no-cache\r\n

Session: 1549167172936112945\r\n

Date: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Expires: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Transport:

RTP/AVP;unicast;client_port=6974-6975;mode=record;source=127.0.0.1;

server_port=6976-6977\r\n

\r\n

Client to server:

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=2 RTSP/1.0\r\n

CSeq: 4\r\n

Transport: RTP/AVP;unicast;client_port=6972-6973;mode=record\r\n

Session: 1549167172936112945\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Accept-Language: en-US\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 4\r\n

Session: 1549167172936112945\r\n

Cache-Control: no-cache\r\n

Date: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Expires: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Transport:

RTP/AVP;unicast;client_port=6972-6973;mode=record;source=127.0.0.1;

136
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

server_port=6978-6979\r\n

\r\n

Client to server:

RECORD rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 5\r\n

Session: 1549167172936112945\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n

Cseq: 5\r\n

Session: 1549167172936112945\r\n

RTP-Info: url=trackid=1,url=trackid=2\r\n

\r\n

Trace of ANNOUNCE and RECORD Using UDP Transport

The following trace example of ANNOUNCE and RECORD RTSP methods using
UDP transport is from RFC 2326. The conference participant client asks the media
server to record the audio and video portions of a meeting. The client uses the
ANNOUNCE method to provide meta-information about the recorded session to
the server.

Client to server:

ANNOUNCE rtsp://server.example.com/meeting RTSP/1.0

CSeq: 90

Content-Type: application/sdp

Content-Length: 121

v=0

o=camera1 3080117314 3080118787 IN IP4 195.27.192.36

s=IETF Meeting, Munich - 1

i=The thirty-ninth IETF meeting will be held in Munich, Germany

u=http://www.ietf.org/meetings/Munich.html

e=IETF Channel 1 <ietf39-mbone@uni-koeln.de>

p=IETF Channel 1 +49-172-2312 451

C H A P T E R 2

Concepts

137
  Apple Computer, Inc. August 29, 2003

c=IN IP4 224.0.1.11/127

t=3080271600 3080703600

a=tool:sdr v2.4a6

a=type:test

m=audio 21010 RTP/AVP 5

c=IN IP4 224.0.1.11/127

a=ptime:40

m=video 61010 RTP/AVP 31

c=IN IP4 224.0.1.12/127

Server to client:

RTSP/1.0 200 OK

CSeq: 90

Client to server:

SETUP rtsp://server.example.com/meeting/audiotrack RTSP/1.0

CSeq: 91

Transport: RTP

AVP;multicast;destination=224.0.1.11;port=21010-21011;mode=record;ttl=127

Server to client:

RTSP/1.0 200 OK

CSeq: 91

Session: 50887676

Transport: RTP

AVP;multicast;destination=224.0.1.11;port=21010-21011;mode=record;ttl=127

Client to server:

SETUP rtsp://server.example.com/meeting/videotrack RTSP/1.0

CSeq: 92

Session: 50887676

Transport: RTP/

AVP;multicast;destination=224.0.1.12;port=61010-61011;mode=record;ttl=127

Server to client:

RTSP/1.0 200 OK

CSeq: 92

Transport: RTP

138
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

AVP;multicast;destination=224.0.1.12;port=61010-61011;mode=record;ttl=127

Client to server:

RECORD rtsp://server.example.com/meeting RTSP/1.0

CSeq: 93

Session: 50887676

Range: clock=19961110T1925-19961110T2015

Server to client:

RTSP/1.0 200 OK

CSeq: 93

Stream Caching

This version of QTSS includes RTSP and RTP features that make it as easy for a
caching proxy server to capture and manage a pristine copy of a media stream.
Some of these features are elements of RTSP that were not supported in previous
versions of QTSS, and other features are additions to RTSP and RTP. The features
are

� Speed RTSP header. This version of QTSS supports the speed header wherever
possible. The speed header allows a caching proxy server to request that a
stream be delivered faster than real time so that the caching proxy server can
move the stream into the cache as quickly as possible. This header is described
in the section “Speed RTSP Header” (page 139).

� x-Transport-Options RTSP header. This version of QTSS supports the
non-standard RTSP header, x-Transport-Options. Caching proxy servers can
use this header to tell the streaming server how late packets the streaming server
can send packets and have them still be useful to the caching proxy server. This
header is described in the section “x-Transport-Options Header” (page 140).

� RTP payload meta-information. This version of QTSS fully supports RTP payload
meta-information (an IETF draft), which includes information such as the packet
transmission time, unique packet number, and video frame type. Caching proxy

C H A P T E R 2

Concepts

139
  Apple Computer, Inc. August 29, 2003

servers can use this information to provide the same quality of service to clients
as the originating server. This header is described in the section “RTP Payload
Meta-Information” (page 141).

� x-Packet-Range RTSP header. This version of QTSS supports the non-standard
RTSP header, x-Packet-Range. This header is similar to the Range RTSP header
but allows the client to specify a specific range of packets instead of a range of
time. A caching proxy server can use the x-Packet-Range header to tell the
originating server to selectively retransmit only those packets that the caching
proxy server needs in order to fill in holes in its cached copy of the stream. This
header is described in the section “x-Packet-Range RTSP Header” (page 148).

The following sections describe each of these features.

Speed RTSP Header
Clients can send to the server the optional Speed RTSP header to request that the
server send data to the client at a particular speed. The server must respond by
echoing the Speed RTSP header to the client. If the server does not echo the Speed
RTSP header, the client must assume that the server cannot accommodate the
request at this time. The server may modify the value of the Speed RTSP header
argument. If the server modifies the value of the argument, the client must accept
the modified value.

The value of the Speed RTSP header argument is expressed as a decimal ratio. The
following example asks the server to send data twice as fast as normal:

Speed: 2.0

Note: An argument of zero is invalid.

If the request also contains a Range argument, the new speed value will take effect
at the specified time.

This header is intended for use when preview of the presentation at a higher or
lower rate is necessary. Bandwidth for the session may have been negotiated earlier
(by means other than RTSP), and therefore re-negotiation may be necessary.

When data is delivered over UDP, it is highly recommended that means such as
RTCP be used to track packet loss rates.

140
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

x-Transport-Options Header
The optional x-Transport-Options RTSP header should be sent from a client
(typically a caching proxy server) to the server in an RTSP SETUP request and must
echoed by the server. If the server does not echo the x-Transport-Options header,
the client must assume that the server does not support this header. The server may
modify the value of the x-Transport-Options header argument. If the server
modifies the value of the argument, the client must accept the modified value.

The body of this header contains one or more arguments delimited by the semicolon
character. For this version of QTSS, there is only one argument, the late-tolerance
argument.

The value of the late-tolerance argument is a positive integer that represents the
number of seconds late that the server can send a media packet and still have it be
useful to the client. The server should use the value of the late-tolerance argument
as a guide for making a best-effort attempt to deliver all media data so that the
delivered data is no older than the late-tolerance value.

Here is an example:

x-Transport-Options: late-tolerance=30

If this example were for a video stream, the server would send all video frames that
are less than 30 seconds old. The server would drop frames that are more than 30
seconds old because they are stale.

Caching proxy servers can use the x-Transport-Options header to prevent the
media server from dropping frames or lowering the stream bit rate in the event it
falls behind in sending media data. If the caching proxy server knows the duration
of the media, it can prevent the server from dropping any frames by setting the
late-tolerance argument to the duration of the media, allowing the cache to receive
a complete copy of the media data.

For a live broadcast, a caching proxy server may want to do extra buffering to
improve quality for its clients. It could use the x-Transport-Options header to
advertise the length of its buffer to the server.

C H A P T E R 2

Concepts

141
  Apple Computer, Inc. August 29, 2003

RTP Payload Meta-Information
Certain RTP clients, such as caching proxy servers, require per-packet meta
information that goes beyond the sequence number and timestamp already
provided in the RTP header. For instance, a caching proxy server may want to
provide stream thinning to its clients in case those clients are bandwidth
constrained. If that stream thinning is based on the type of video frame being sent
by the originating server, there is no payload-independent way for the caching
proxy server to determine the frame type.

The RTP payload meta-information solves this deficiency by including information
that RTP clients can use to provide the same quality of service to clients as the
originating server. The following section, “RTP Data” (page 141), describes the RTP
data that the server delivers in the RTP payload meta-information type.

RTP Data

The server uses the RTP payload meta-information type to provide the following
information to the RTP client:

� Transmission time, described in the section “Transmission Time” (page 141)

� Frame type, described in the section “Frame Type” (page 142)

� Packet number, described in the section “Packet Number” (page 142)

� Packet position, described in the section “Packet Position” (page 142)

� Media data, described in the section “Media Data” (page 143)

� Sequence number, described in the section “Sequence Number” (page 143)

Transmission Time

The server sends the transmission time as a single four-octet unsigned integer
representing the recommended transmission time of the RTP packet in
milliseconds.

The transmission time is always offset from the start of the media presentation. For
example, if the SDP response for a URL includes a range of 0-729.45 and the client
makes a PLAY request with a range of 100-729.45, the first RTP packet from the
server should provide a transmission time value of approximately 100,000. (It may

142
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

not be exactly 100,000 because the server is free to find a frame nearby the requested
time.) If the SDP for a URL does not contain a range, the client can at least use these
values as relative offsets.

Frame Type

The server sends the frame type as a single 16-bit unsigned integer value for which
several well-known values representing different frame types are defined. The
well-known values are as follows:

� 0 represents an unknown frame type

� 1 represents a key frame

� 2 represents a b-frame

� 3 represents a p-frame

Note: The frame type is valid for video RTP streams only.

Packet Number

The server sends the packet number as a single 64-bit unsigned integer value. The
value is the packet number offset from the absolute start of the stream. For example,
if the SDP response for a URL includes a range of 0-729.45 and the client makes a
PLAY request with a range of 0-729.45, the packet number value of the first packet
will be 0 and will increment by 1 for each subsequent packet. If there are 1000
packets between in the first 60 seconds of a stream and a client makes a PLAY
request of 60-729.45, the packet number of the first packet will be 1001 and will
increment by 1 for each subsequent packet.

Packet Position

The server sends the packet position as a single 64-bit unsigned integer value. The
value is the byte offset of this packet from the absolute start of the stream. For
example, if the SDP response for a URL includes a range of 0-729.45 and the client
makes a PLAY request with a range of 100-729.45, the packet position value of the
first video RTP packet will be the total number of bytes of the video RTP packets
between 0 and 100. Only the RTP packet payload bytes are used to compute each
packet position value.

The server cannot provide the packet position for live or dynamic media. In general,
if the media SDP has a range attribute, the server can provide the packet position.

C H A P T E R 2

Concepts

143
  Apple Computer, Inc. August 29, 2003

Media Data

The server sends media data for the underlying RTP protocol.

Sequence Number

The server sends the RTP sequence number as a two-octet value. The sequence
number is useful for mapping RTP meta-information to the underlying payload
data that they refer to, if that data is being sent out-of-band.

Standard Format

The RTP payload meta-information returned by the server consists of a series of
fields. Each field consists of a header and data. When returned in standard format,
the first bit of the header is zero to indicate that the field is in standard format (that
is, not compressed).

The first bit is followed by the 15-bit Name subfield. The Name subfield contains
two ASCII alphanumeric characters that represent one of the RTP data types listed
in the section “RTP Data” (page 141). The first character is seven bits long, so the
value of the Name subfield must consist of seven-bit ASCII characters.

Table 2-26 lists the Name subfield values for each of the RTP data types.

The Name subfield is followed by a two-octet Length subfield that contains the full
length of the Data subfield.

Figure 2-9 shows the format of the Name subfield in standard format.

Table 2-26 Defined Name subfield values

RTP data type Name subfield value

Transmission time tt

Frame type ft

Packet number pn

Packet position pp

Media md

Sequence number sn

144
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Figure 2-9 Standard RTP payload meta-information format

Figure 2-10 shows the format of the RTP data in standard format.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 length

data

data

Name

0 lengthName

0 1 2 3

C H A P T E R 2

Concepts

145
  Apple Computer, Inc. August 29, 2003

Figure 2-10 RTP data in standard format

Packet number data

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 8

(high order packet number)

(low order packet number)

pn

0 1 2 3

Transmit time data

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 4

(transmit time)

tt

0 1 2 3

Frame type data

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 2

(frame type)

ft

0 1 2 3

Sequence number

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 2

(sequence number)

sq

0 1 2 3

Packet position data

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 8

(high order packet number)

(low order packet number)

pp

0 1 2 3

Media data

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 (field length)md

0 1 2 3

146
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Compressed Format

When the server provides a field of RTP meta-information in compressed format,
the field consists of a header and data. The first bit of the header is set to one to
indicate that the rest of the header is in compressed format.

The first bit is followed by a seven-bit ID subfield that identifies the type of data in
the Data subfield. The meaning of the ID subfield is assigned by the server, as
described in the section “x-RTP-Meta-Info RTSP Header Negotiation” (page 147).

The ID subfield is followed by the one-octet Length subfield that contains the full
length of the Data subfield that follows the Length subfield.

Figure 2-11 shows the format of the ID subfield in compressed format.

Figure 2-11 Compressed RTP payload meta-information format

Figure 2-12 shows an RTP payload meta-information packet when some fields are
in compressed format and some fields are in standard format.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 datalengthID

1 datalengthID

1 datalengthID

0 1 2 3

C H A P T E R 2

Concepts

147
  Apple Computer, Inc. August 29, 2003

Figure 2-12 Mixed RTP payload meta-information format

Negotiation for Use of Compressed Format

Use of the compressed format requires out-of-band negotiation between client and
server. During the negotiation process, the server assigns a seven-bit ID for each
RTP data type. Instead sending the name of the RTP data type (for example, ft) in
the RTP payload, only the ID is sent.

Negotiation for using the compressed format can occur in two ways:

� Through the x-RTP-Meta-Info RTSP header, described in the section
“x-RTP-Meta-Info RTSP Header Negotiation” (page 147)

� Through the SDP description of the data, described in the section “Describing
RTP-Meta-Info Payload in SDP” (page 148)

x-RTP-Meta-Info RTSP Header Negotiation

The client can negotiate compression with the server for any payload by sending an
x-RTP-Meta-Info RTSP header to the server in a SETUP request. If the server does
not echo the header in its SETUP response, the client must assume that the server
does not support this header.

The client’s SETUP request specifies the RTP data types the client wants to receive
in the specified RTP stream. Here is an example of a client request:

x-RTP-Meta-Info: to;bi;bo

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 datalengthID

1 length

data

Name

1 datalengthID

0 1 2 3

Compressed format

Standard format

Compressed format

148
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

The server’s response lists the names of the RTP data that the server will provide for
that RTP stream. If the server supports the compressed format, the response may
also contain ID mappings for some or all of the names. The server may return a
subset of the names if it doesn’t support all of the requested names, or if some
requested names don’t apply to the RTP stream specified by the SETUP request.
Here are two examples of a server response:

x-RTP-Meta-Info: to=0;bi;bo=1

x-RTP-Meta-Info: to;bi

In the first response, the server indicates that it will provide bi data in standard
format. The server will send to data in compressed format and use an ID of 0 to
indicate fields that contain to data. The server will send bo data in compressed
format and use an ID of 1 to indicate fields that contain bo data. Because IDs are
represented by seven bits, an ID must be between 0 and 127.

In the second response, the server indicates that it will provide to and bi data in
standard format.

Describing RTP-Meta-Info Payload in SDP

The originator of RTP-Meta-Info payload packets should describe the contents of
the payload as part of the SDP description of the media. RTP-Meta-Info descriptions
consist of two additional a= headers.

The a=x-embedded-rtpmap header tells the client the payload type of the underlying
RTP payload.

The a=x-RTP-Meta-Info header tells the client the RTP data types the server will
provide. Here is an example of an SDP description of the RTP-Meta-Info payload:

m=other 5084 RTP/AVP 96

a=rtpmap:96 x-RTP-Meta-Info

a=x-embedded-rtpmap:96 x-QT}

a=x-RTP-Meta-Info: standard;to;bi;bo

x-Packet-Range RTSP Header
The x-Packet-Range RTSP header allows the client (typically a caching proxy
server) to specify a range of packets that the server should retransmit, thereby
allowing the client to fill in holes in its cached copy of the stream. The client should

C H A P T E R 2

Concepts

149
  Apple Computer, Inc. August 29, 2003

send the x-Packet-Range RTSP header in a PLAY request in place of the Range
header. If the server does not support this header, it sends the client a “501 Header
Not Implemented” response.

The body of this header contains a start and stop packet number for this PLAY
request. The specified packet numbers must be based on the packet number
RTP-Meta-Info field. For information on how to request packet numbers as part of
the RTP stream, see the RTP-Meta-Info payload format IETF Draft.

The header format consists of two arguments delimited by the semicolon character.
The first argument must be the packet number range, with the start and stop packet
numbers separated by a hyphen (-). The second argument must be the stream URL
to which the specified packets belong.

The following example requests packet numbers 4551 through 4689 for trackID3:

x-Packet-Range: pn=4551-4689;url=trackID3

The stop packet number must be equal to or greater than the start packet number.
Otherwise, the server may return an error or may not send any media data after the
PLAY response.

Reliable UDP

Reliable UDP is a set of quality of service enhancements, such as congestion control
tuning improvements, retransmit, and thinning server algorithms, that improve the
ability to present a good quality RTP stream to RTP clients even in the presence of
packet loss and network congestion. Reliable UDP’s congestion control
mechanisms allow streams to behave in a TCP-friendly fashion without disturbing
the real-time nature of the protocol.

To work well with TCP traffic on the Internet, Reliable UDP uses retransmission
and congestion control algorithms similar to the algorithms used by TCP.
Additionally, these algorithms are time-tested to utilize available bandwidth
optimally.

Relibable UDP features include

150
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

� Client acknowledgment of packets sent by the server to the client

� Windowing and congestion control so the server does not exceed the currently
available bandwidth

� Server retransmission to the client in the event of packet loss

� Faster than real-time streaming known as “overbuffering”

Whether a client uses Reliable UDP is determined by the content of the client’s RTSP
SETUP request.

Acknowledgment Packets
When using Reliable UDP, the server expects to receive an acknowledgment for
each RTP packet it sends. If the server does not receive an acknowledgment for a
packet, it may retransmit the packet. The client does not need to send an
acknowledgment packet for each RTP packet it receives. Instead, the client can
coalesce acknowledgments for several packets and send them to the server in a
single packet.

The Reliable UDP acknowledgment packet format is a type of RTCP APP packet.
After the standard RTCP APP packet headers, the payload for an acknowledgment
packet consists of an RTP sequence number followed by a variable length bit mask.
The sequence number identifies the first RTP packet that the client is
acknowledging. Each additional RTP packet being acknowledged is represented by
a bit set in the bitmask. The bit mask is an offset from the specified sequence
number, where the high order bit of the first byte in the mask is one greater than the
sequence number, the second bit is two greater, and so on. Bit masks must be sent
in multiples of four octets. Setting a bit to 0 in the mask simply means that the client
does not wish to acknowledge this sequence number right now and does not imply
a negative acknowledgment.

Figure 2-13 shows the format of the Reliable UDP acknowledgment packet.

C H A P T E R 2

Concepts

151
  Apple Computer, Inc. August 29, 2003

Figure 2-13 Reliable UDP acknowledgment packet format

RTSP Negotiation
Whether to use Reliable UDP is negotiated out of band in RTSP. If a client wants to
use Reliable UDP, it should include an x-Retransmit header in its RTSP SETUP
request. The body of the header contains the retransmit protocol name
(our-retransmit) followed by a list of arguments delimited by the semicolon
character.

Currently, one argument can be passed from the client to the server: the window
argument. If included, the window argument tells the Reliable UDP server the size
of the client’s window in KBytes.

Here is an example:

x-Retransmit: our-retransmit;window=128

The server must echo the header and all parameters. If the x-Retransmit header is
not in the SETUP response, the client must assume that Reliable UDP will not be
used for this stream. If the server changes the parameter values, the client must use
the new values.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

V=2 P lengthPT=APP=204subtype

SSRC/CSRC

reserved seq num

mask...

name (ASCII)='qtak'

SSRC/CSRC

0 1 2 3

152
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Tunneling RTSP and RTP Over HTTP

Using standard RTSP/RTP, a single TCP connection can be used to stream a
QuickTime presentation to a user. Such a connection is not sufficient to reach users
on private IP networks behind firewalls where HTTP proxy servers provide clients
with indirect access to the Internet. To reach such clients, QuickTime 4.1 supports
the placement of RTSP and RTP data in HTTP requests and replies. As a result,
viewers behind firewalls can access QuickTime presentations through HTTP proxy
servers.

The QuickTime HTTP transport is built from two separate HTTP GET and POST
method requests initiated by the client. The server then binds the connections to
form a virtual full-duplex connection. The protocol that forms this type of
connection is must meet the following requirements:

� Work with unmodified RTSP/RTP packets

� Be acceptable to HTTP proxy servers

� Indicate to proxy servers that requests and replies are not to be cached

� Work in an environment where the client originates all requests

� Provide a way to uniquely identify request pairs so that they can be bound
together to form a full-duplex connection

� Ensure that related requests connect to the same RTSP server in spite of
load-balancing algorithms such as round-robin DNS servers

� Identify any request as one that will eventually tunnel an RTSP conversation
and RTP data

The QuickTime HTTP transport exploits the capability of HTTP’s GET and POST
methods to carry an indefinite amount of data in their reply and message body
respectively. In the most simple case, the client makes an HTTP GET request to the
server to open the server-to-client connection. Then the client makes a HTTP POST
request to the server to open the client-to-server connection. The resulting virtual
full-duplex connection (shown in Figure 2-14) makes it possible to send unmodified
RTSP and RTP data over the connection.

C H A P T E R 2

Concepts

153
  Apple Computer, Inc. August 29, 2003

Figure 2-14 Required connections for tunneling

HTTP Client Request Requirements
To work with the QuickTime HTTP transport, client HTTP requests must

� Be made using HTTP version 1.0

� Include in the header an x-sessioncookie directive whose value is a globally
unique identifier (GUID). The GUID makes it possible for the server to
unambiguously bind the two connections by passing it as an opaque token to the
C library strcmp function

� In POST requests, the application/x-rtsp-tunneled MIME type for both the
Content-Type and Accept directives must be specified; this MIME type reflects
the data type that is expected and delivered by the client and server

� Direct POST requests to the specified IP address if a server’s reply to an initial
GET request includes the x-server-ip-address directive and an IP address

In addition to these requirements, client HTTP POST request headers may include
other directives in order to help HTTP proxy servers handle RTSP streams
optimally.

Sample Client GET Request

Here is an example of a client GET request:

GET /sw.mov HTTP/1.0

User-Agent: QTS (qtver=4.1;cpu=PPC;os=Mac8.6)

x-sessioncookie: tD9hKgAAfB8ABCftAAAAAw

data

data
Client

Server-to-client connection created by the client’s GET request

Server

Client-to-server connection created by the client’s POST request

154
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

Sample Client POST Request

Here is an example of a client POST request:

POST /sw.mov HTTP/1.0

User-Agent: QTS (qtver=4.1;cpu=PPC;os=Mac8.6)

Content-Type: application/x-rtsp-tunnelled

Pragma: no-cache

Cache-Control: no-cache

Content-Length: 32767

Expires: Sun, 9 Jan 1972 00:00:00 GMT

Note: The server does not respond to client POST requests.
The client will continue to send RTSP data as the message body
of this POST request.

The sample client POST request includes three optional header directives that are
present to control the behavior of HTTP proxy servers so that they handle RTSP
streams optimally:

� The Pragma: no-cache directive tells many HTTP 1.0 proxy servers not to cache
the transaction.

� The Cache-Control: no-cache directive tells many HTTP 1.1 proxy servers not to
cache the transaction.

� The Expires directive specifies an arbitrary time in the past. This directive is
intended to prevent proxy servers from caching the transaction.

HTTP requires that all POST requests have a content-length header. In the sample
client POST request, the content length of 32767 is an arbitrary value. In practice, the
actual value seems to be ignored by proxy servers, so it is possible to send more than
this amount of data in the form of RTSP requests. The QuickTime Server ignores the
content-length header.

HTTP Server Reply Requirements
When the server receives an HTTP GET request from a client, it must respond with
a reply whose header specifies the application/x-rtsp-tunneled MIME type for
both the Content-Type and Accept directives.

Note: The server must reply to all client HTTP GET requests
but never replies to client HTTP POST requests.

C H A P T E R 2

Concepts

155
  Apple Computer, Inc. August 29, 2003

Server reply headers may optionally include the Cache-Control: no-store and
Pragma: no-cache directives to prevent HTTP proxy servers from caching the
transaction. It is recommended that implementations honor these headers if they
are present.

Server clusters are often allocated connections by a round-robin DNS or other
load-balancing algorithm. To insure that client requests are directed to the same
server among potentially several servers in a server farm, the server may optionally
include the x-server-ip-address directive followed by an IP address in dotted
decimal format in the header of its reply to a client’s initial GET request. When this
directive is present, the client must direct its POST request to the specified IP
address regardless of the IP address returned by a DNS lookup.

In the absence of an HTTP error, the server reply header contains “200 OK”. An
HTTP error in a server reply reflects the inability of the server to form the virtual
full-duplex connection; an HTTP error does not imply an RTSP error. When an
HTTP error occurs, the server simply closes the connection.

Sample Server Reply to a GET Request

Here is an example of a server reply to a GET request:

HTTP/1.0 200 OK

Server: QTSS/2.0 [v101] MacOSX

Connection: close

Date: Thu, 19 Aug 1982 18:30:00 GMT

Cache-Control: no-store

Pragma: no-cache

Content-Type: application/x-rtsp-tunnelled

Including the following header directives in a reply is not required but is
recommended because the directives they tell proxy servers to behave in a way that
allows them to handle RTSP streams optimally:

� The Date directive specifies an arbitrary time in the past. This keeps proxy
servers from caching the transaction.

� The Cache-Control: no-cache directive tells many HTTP 1.1 proxy servers not to
cache the transaction.

� The Pragma: no-cache directive tells many HTTP 1.0 proxy servers not to cache
the transaction.

156
  Apple Computer, Inc. August 29, 2003

C H A P T E R 2

Concepts

RTSP Request Encoding
RTSP requests made by the client on the POST connection must be encoded using
the base64 method. (See RFC 2045 “Internet Message Bodies”, section 6.8, Base64
Content-Transfer-Encoding, and RFC 1421 “Privacy Enhancements for Electronic
Mail,” section 4.3.2.4, Printable Encoding.) The base64 encoding prevents HTTP
proxy server from determining that an embodied RTSP request is a malformed
HTTP requests.

Here is a sample RTSP request before it is encoded:

DESCRIBE rtsp://tuckru.apple.com/sw.movRTSP/1.0

CSeq: 1

Accept: application/sdp

Bandwidth: 1500000

Accept-Language: en-US

User-Agent: QTS (qtver=4.1;cpu=PPC;os=Mac8.6)

Here is the same request after encoding:

REVTQ1JJQkUgcnRzcDovL3R1Y2tydS5hcHBsZS5jb20vc3cubW92IFJUU1AvMS4w

DQpDU2VxOiAxDQpBY2N1cHQ6IGFwcGxpY2F0aW9uL3NkcA0KQmFuZHdpZHRo0iAx

NTAwMDAwDQpBY2N1cHQtTGFuZ3VhZ2U6IGVuLVVTDQpVc2VyLUFnZW50OiBRVFMg

KHF0dmVyPTQuMTtjcHU9UFBDO29zPU1hYyA4LjYpDQoNCg==

Connection Maintenance
The client may close the POST connection at any time. Doing so frees socket and
memory resources at the server that might otherwise be unused for a long time. In
QuickTime HTTP streaming, the best time to close the POST connection usually
occurs after the PLAY request.

Support For Other HTTP Features
Support for HTTP features that are not documented here is not required in order to
implement the tunneling of QuickTime RTSP and RTP over HTTP. The tunnel
should mimic a normal TCP connection as closely as possible without adding
unnecessary features.

157
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

3 Tasks

This chapter describes common QTSS tasks:

� Building the Streaming Server, described in “Building the Streaming Server”
(page 157).

� Compiling and installed a QTSS module, described in “Compiling a QTSS
Module into the Server” (page 158).

� Getting and setting attribute values, described in “Working with Attributes”
(page 162). This section also tells you how to add your own attributes to an
object.

� Using the server’s file module to open, read, and close files, described in “Using
Files” (page 168). This section also tells you how to implement your own file
system module.

� Communicating with the server with the Admin protocol, described in “Using
the Admin Protocol” (page 181).

Building the Streaming Server

This section describes the Streaming Server build and install process for Mac OS X,
POSIX, and Windows platforms.

158
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Mac OS X
Use the Buildit script to build the Streaming Server for Mac OS X. Use the following
command line options: StreamingServer.pbroj -target DSS. As they are built, the
binaries are left in the build directory.

The command BuildOSXInstallerPkg dss creates a file named
DarwinStreamingServer.pkg.

POSIX
Use the Buildit script to build the Streaming Server on POSIX platforms. Binaries
are left in the source directories. To create the installer, use the buildtarball script,
which creates an install directory with Install script and tar file.

Windows
Use the WindowsNTSupport/StreamingServer.dsw script to build the Streaming Server
on Windows platforms. Batch build all. Binaries are left in the Debug and Release
directory. The WindowsNTSupport/makezip.bat script creates an install directory with
an Install.bat file.

Building a QuickTime Streaming Server Module

You can add a QTSS module to the QuickTime Streaming Server by compiling the
code directly into the server itself or by building a module as a separate code
fragment that is loaded when the server starts up.

Whether compiled into the server or built as a separate module, the code for the
module is the same. The only difference is the way in which the code is compiled.

Compiling a QTSS Module into the Server
If you have the source code for the QuickTime Streaming Server, you can compile
your module into the server.

C H A P T E R 3

Tasks

159
  Apple Computer, Inc. August 29, 2003

Note: The source code for the server is available at

 http://www.publicsource.apple.com/projects/streaming

To compile your code into the server, locate the function
QTSServer::LoadCompiledInModules in QTSServer.cpp and add to it the following
lines

QTSSModule* myModule = new QTSSModule("__XYZ__");

(void)myModule->Initialize(&sCallbacks, &__XYZMAIN__);

(void)AddModule(myModule);

where XYZ is the name of your module and XYZMAIN is your module’s main routine.

Some platforms require that each module use unique function names. To prevent
name conflicts when you compile a module into the server, make your functions
static.

Modules that are compiled into the server are known as static modules.

Building a QTSS Module as a Code Fragment
To have the server load at runtime a QTSS module that is a code fragment, follow
these steps:

1. Compile the source for your module as a dynamic shared library for the
platform you are targeting. For Mac OS X, the project type must be loadable
bundle.

2. Link the resulting file against the QTSS API stub library for the platforms you
are targeting.

3. Place the resulting file in the /Library/QuickTimeStreaming/Modules directory
(Mac OS X), /usr/local/sbin/StreamingServerModules (Darwin platforms), and
c:\Program Files\Darwin StreamingServer\QTSSModules. The server will load
your module the next time it restarts.

Some platforms require that each module use unique function names. To prevent
name conflicts when the server loads your module, strip the symbols from your
module before you have the server load it.

160
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Debugging

Several server preferences in the streamingserver.xml file are available for enabling
the generation of debugging information, which is printed on the terminal screen.
The following sections provide information on debugging:

RTSP and RTP Debugging
To enable the display of RTSP and RTP informati on the terminal screen, modify the
RTSP_debug_printfs preference in the streamingserver.xml file and restart the
server:

<PREF NAME=”RTSP_debug_printfs” TYPE=”BOOL16” >true</PREF>

To enable the display of packet header information, modify the
“enable_packet_header_printfs” preference in the streamingserver.xml file:

<PREF NAME=”enable_packet_header_printfs” TYPE=”BOOL16” >true</PREF>

Then specify which packet headers to display by modifying the
“packet_header_printf_options” preference. The following example enables the
display of all packet headers:

<PREF NAME=”packet_header_printf_options” >rtp;rr;sr;app;ack;</PREF>

In the previous example, rtp enables the display of RTP packet headers, rr enables
the display of RTCP receiver reports, sr enables the display of RTCP sender reports,
app enables the display of RTCP application packets, and ack enables the display of
Reliable UDP RTP acknowledgement packets.

After enabling RTSP and RTP debugging, restart the Streaming Server in debug
mode using this command:

QuickTimeStreamingServer -d

When you connect a client, debug information is displayed on the terminal screen.

C H A P T E R 3

Tasks

161
  Apple Computer, Inc. August 29, 2003

Source File Debugging Support
You can enable debugging in specific source files. For example, in the file
CommonUtilitiesLib/Task.h, make the following change:

#define TASK_DEBUG 1

Rebuild and start the Streaming Server in debug mode:

QuickTimeStreamingServer -d

Here is some sample output:

Task::Signal enque task TaskName=RTSPSession ...

TaskThread::Entry run task TaskName=RTSPSession ...

TaskThread::Entry insert task TaskName=RTSPSession ...

TaskThread::Entry run task TaskName=RTSPSession ...

TaskThread::WaitForTask found timer task TaskName=QTSSAccessLog ...

TaskThread::Entry run task TaskName=QTSSAccessLog ...

You can also enable debugging in CommonUtilitiesLib/OSFileSource.cpp:

#define FILE_SOURCE_DEBUG 1

Here is some sample output:

OSFileSource::SetLog=/Library/QuickTimeStreaming/Movies/sample_100kbit.mov

FileMap::AllocateBufferMap shared buffers

OSFileSource::ReadFromCache inPosition =272 ...

OSFileSource::ReadFromCache inPosition =276 ...

OSFileSource::ReadFromCache inPosition =280 ...

...

OSFileSource::ReadFromCache inPosition =80667

162
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Working with Attributes

QTSS objects consist of attributes that are used to store data. Every attribute has a
name, an attribute ID, a data type, and permissions for reading and writing the
attribute’s value. There are two attribute types:

� static attributes. Static attributes are present in all instances of an object type. A
module can add static attributes to objects from its Register role only. All of the
server’s built-in attributes are static attributes. For information about adding
static attributes to object types, see the section “Adding Attributes” (page 166)

� instance attributes. Instance attributes are added to a specific instance of any
object type. A module can use any role to add an instance attribute to an object
and can also remove instance attributes that it has added to an object. For
information about adding instance attributes to objects, see the section “Adding
Attributes” (page 166).

Note: Adding static attributes is more efficient than adding
instance attributes, so adding static attributes instead of adding
instance attributes is strongly recommended.

Getting Attribute Values
Modules use attributes stored in objects to exchange information with the server, so
they frequently get attribute values. Three callback routines get attribute values:

� QTSS_GetValue, which copies the attribute value into a buffer provided by the
module. This callback can be used to get the value of any attribute, but it is not
as efficient as QTSS_GetValuePtr.

� QTSS_GetValueAsString, which copies the attribute value as a string into a buffer
provided by the module. This callback can be used to get the value of any
attribute. This is the least efficient way to get the value of an attribute

� QTSS_GetValuePtr, which returns a pointer to the server’s internal copy of the
attribute value. This is the most efficient way to get the value of preemptive safe
attributes. It can also be used to get the value of non-preemptive safe attributes,
but the object must first be locked and must be unlocked after

C H A P T E R 3

Tasks

163
  Apple Computer, Inc. August 29, 2003

QTSS_GetValuePtr is called. When getting the value of a single
non-preemptive-safe attribute, calling QTSS_GetValue may be more efficient
than locking the object, calling QTSS_GetValuePtr and unlocking the object.

The sample code in Listing 3-1 calls QTSS_GetValue to get the value of the
qtssRTPSvrCurConn attribute, which is not preemptive safe, from the
QTSS_ServerObject object.

Listing 3-1 Getting the value of an attribute by calling QTSS_GetValue

UInt32 MyGetNumCurrentConnections(QTSS_ServerObject inServerObject)

{

// qtssRTPSvrCurConn is a UInt32, so provide a UInt32 for the result.

UInt32 theNumConnections = 0;

// Pass in the size of the attribute value.

UInt32 theLength = sizeof(theNumConnections);

// Retrieve the value.

QTSS_Error theErr = QTSS_GetValue(inServerObject, qtssRTPSvrCurConn, 0,

&theNumConnections, &theLength);

// Check for errors. If the length is not what was expected, return 0.

if ((theErr != QTSS_NoErr) || (theLength != sizeof(theNumConnections))

return 0;

return theNumConnections;

}

The sample code in Listing 3-2 calls QTSS_GetValuePtr, which is the preferred way
to get the value of preemptive-safe attributes. In this example, value of the
qtssRTSPReqMethod attribute is obtained from the object QTSS_RTSPRequestObject.

Listing 3-2 Getting the value of an attribute by calling QTSS_GetValuePtr

QTSS_RTSPMethod MyGetRTSPRequestMethod(QTSS_RTSPRequestObject

inRTSPRequestObject)

{

QTSS_RTSPMethod* theMethod = NULL;

UInt32 theLen = 0;

164
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

QTSS_Error theErr = QTSS_GetValuePtr(inRTSPRequestObject, qtssRTSPReqMethod,

0,

(void**)&theMethod, &theLen);

if ((theErr != QTSS_NoErr) || (theLen != sizeof(QTSS_RTSPMethod))

return -1; // Return a -1 if there is an error, which is not a valid

// QTSS_RTSPMethod index

else

return *theMethod;

}

You can obtain the value any attribute by calling QTSS_GetValueAsString, which gets
the attribute’s value as a C string. Calling QTSS_GetValueAsString is convenient
when you don’t know the type of data the attribute contains. In Listing 3-3, the
value of the qtssRTPSvrCurConn attribute is obtained as a string from the
QTSS_ServerObject.

Listing 3-3 Getting the value of an attribute by calling QTSS_GetValueAsString

void MyPrintNumCurrentConnections(QTSS_ServerObject inServerObject)

{

// Provide a string pointer for the result

char* theCurConnString = NULL;

// Retrieve the value as a string.

QTSS_Error theErr = QTSS_GetValueAsString(inServerObject,

qtssRTPSvrCurConn, 0, &theCurConnString);

if (theErr != QTSS_NoErr) return;

// Print out the result. Because the value was returned as a string, use

// %s in the printf format.

::printf("Number of currently connected clients: %s\n",

theCurConnString);

// QTSS_GetValueAsString allocates memory, so reclaim the memory by

calling QTSS_Delete.

QTSS_Delete(theCurConnString);

}

Setting Attribute Values
Two QTSS callback routines are available for setting the value of an attribute:
QTSS_SetValue and QTSS_SetValuePtr.

C H A P T E R 3

Tasks

165
  Apple Computer, Inc. August 29, 2003

The sample code in Listing 3-4 would be found handling the Route role. It calls
QTSS_GetValuePtr to get the value of the qtssRTSPReqFilePath. If the path matches a
certain string, the function sets a new request root directory by calling
QTSS_SetValue to set the qtssRTSPReqRootDir attribute to a new path.

Listing 3-4 Setting the value of an attribute by calling QTSS_SetValue

// First get the file path for this request using QTSS_GetValuePtr

char* theFilePath = NULL;

UInt32 theFilePathLen = 0;

QTSS_Error theErr = QTSS_GetValuePtr(inParams->inRTSPRequest,

qtssRTSPReqFilePath, 0, &theFilePath,

&theFilePathLen);

// Check for any errors

if (theErr != QTSS_NoErr) return;

// See if this path is a match. If it is, use QTSS_SetValue to set the root

directory for this request.

if ((theFilePathLen == sStaticFilePathLen) &&

(::strncmp(theFilePath, sStaticFilePath,

theFilePathLen) == 0))

{

theErr = QTS_SetValue(inParams->inRTSPRequest, qtssRTSPReqRootDir, 0,

sNewRootDirString,

sNewRootDirStringLen);

if (theErr != QTSS_NoErr) return;

}

Listing 3-5 (page 166) demonstrates the use of the QTSS_SetValuePtr callback. The
QTSS_SetValuePtr callback associates an attribute with the value of a module’s
variable. This code sample modifies the QTSS_ServerObject object nonatomically, so
it calls QTSS_LockObject to prevent other threads from accessing the attributes of the
QTSS_ServerObject before the value has been set.

Then the code sample calls QTSS_CreateObjectValue to create a
QTSS_ConnectedUserObject object as the value of the qtssSvrConnectedUsers
attribute of the QTSS_ServerObject object. Then the code sample calls
QTSS_SetValuePtr to set the value of the qtssConnectionBytesSent attribute of the

166
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

QTSS_ConnectedUserObject object to the module’s fBytesSent variable. Thereafter,
when any module gets the value of the qtssConnectionBytesSent attribute, it will
get the current value of the module’s fBytesSent variable.

After calling QTSS_SetValuePtr, the code sample calls QTSS_UnlockObject to unlock
the QTSS_ServerObject object.

Listing 3-5 Setting the value of an attribute by calling QTSS_SetValuePtr

UInt32 index;

QTSS_LockObject(sServer);

QTSS_CreateObjectValue(sServer, qtssSvrConnectedUsers,

qtssConnectedUserTypeObject, &index, &fQTSSObject);

QTSS_CreateObjectValue(sServer, qtssSvrConnectedUsers,

qtssConnectedUserObjectType, &index, &fQTSSObject);

QTSS_SetValuePtr(fQTSSObject, qtssConnectionBytesSent, &fBytesSent,

sizeof(fBytesSent));

QTSS_UnlockObject(sServer);

Adding Attributes
Any module can add an attribute to a QTSS object type by calling the
QTSS_AddStaticAttribute callback routine from its Register role. Modules can also
call QTSS_AddInstanceAttribute from any role to add an attribute to an instance of
an object.

Note: Adding one or more attributes to an object type or to an
instance of an object is the most efficient and the recommended
way for modules to store data that is specific to a particular
session.

Once added, the new attribute is included in every object of that type that the server
creates and its value can be set and obtained by calling that same callback routines
that set and obtain the value of the server’s built-in attributes: QTSS_SetValue,
QTSS_SetValuePtr, QTSS_GetValue, and QTSS_GetValuePtr.

C H A P T E R 3

Tasks

167
  Apple Computer, Inc. August 29, 2003

Note: If you are adding attributes to an object that your
module created, you must first lock the object by calling
QTSS_LockObject. When all of the attributes have been added,
call QTSS_UnlockObject to unlock the object.

The sample code in Listing 3-6 calls QTSS_AddStaticAttribute to add an attribute to
the object QTSS_ClientSessionObject.

Listing 3-6 Adding a static attribute

QTSS_Error MyRegisterRoleFunction()

{

// Add the static attribute. The third parameter is always NULL.

QTSS_Error theErr = QTSS_AddStaticAttribute(qtssClientSessionObjectType,

“MySampleAttribute”, NULL,

qtssAttrDataTypeUInt32);

// Retrieve the ID for this attribute. This ID can be passed into

QTSS_GetValue,

// QTSS_SetValue, and QTSS_GetValuePtr.

QTSS_AttributeID theID;

theErr = QTSS_IDForAttr(qtssClientSessionObjectType, MySampleAttribute",

&theID);

// Store the attribute ID in a global for later use. Attribute IDs do not

// change while the server is running.

gMyExampleAttrID = theID;

}

Note: Attribute permissions for an added attribute (static or
instance) are automatically set to readable, writable, and
preemptive safe.

168
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Using Files

QTSS supports file system modules so that QTSS can transparently and easily work
with custom file systems. For example, a QTSS file system module can allow a QTSS
module to read a custom networked file system or a custom database. Support for
reading files consists of the following:

� QTSS file system callback routines that any module can use to open, read, and
close files. Calling the file system callback routines is described in the section
“Reading Files Using Callback Routines” (page 168). The QTSS file system
callback routines allow QTSS to easily work with many different file system
types. A QTSS module that uses the file system callbacks for reading all files can
transparently use whatever file system is deployed on a server.

� File system roles for which modules that implement file systems register. These
roles provide a bridge between QTSS and a specific file system. The file system
roles are described in the section “Implementing a QTSS File System Module”
(page 170). You could, for example, write a file system module that interfaces
QTSS to a custom database or a custom networked file system.

Reading Files Using Callback Routines
In QTSS, a file is represented by a QTSS stream, so you can use existing QTSS stream
callback routines to read files. The callback routines that are available for working
with files are:

� QTSS_OpenFileObject, which is called to open a file in the local operating system.
This call is one of two callback routines that is only used when working with
files.

� QTSS_CloseFileObject, which is called to close a file that was opened by a
previous call to QTSS_OpenFileObject. This call is one of two callback routines
that is only used when working with files.

� QTSS_Read, which is called to read data from a file object’s stream that was
created by a previous call to QTSS_OpenFileObject.

� QTSS_Seek, which is called to set the current position of a file object’s stream.

C H A P T E R 3

Tasks

169
  Apple Computer, Inc. August 29, 2003

� QTSS_Advise, which is called to tell a file system module that a specified section
of one of its streams will be read soon.

� QTSS_RequestEvent, which is called to tell a file system module that the calling
module wants to be notified when one of the events in the specified event mask
occurs. The events are when a stream becomes readable and when a stream
becomes writable.

In QTSS, a file is QTSS_Object that has its own object type, QTSS_FileObject, that
allows you to use standard QTSS callbacks (QTSS_GetValue, QTSS_GetValueAsString,
and QTSS_GetValuePtr) to get meta information about a file, such as its length and
modification date. You can use standard QTSS callbacks to store any amount of file
system meta information with the file object. For example, a module working with
a POSIX file system would want to add an attribute to the file object that stores the
POSIX file system descriptor. A file object also has a QTSS stream reference that can
be used when calling QTSS stream routines that work with files, such as QTSS_Read.

The sample code in Listing 3-7 shows how to open a file, determine the file’s length,
read the entire file, close the file, and return the data it contains.

Listing 3-7 Reading a file

QTSS_Error ReadEntireFile(char* inPath, void** outData, UInt32* outDataLen)

{

QTSS_Object theFileObject = NULL;

QTSS_Error theErr = QTSS_OpenFileObject(inPath, qtssOpenFileNoFlags,

&theFileObject);

if (theErr != QTSS_NoErr)

return theErr; // The file wasn't found or it couldn't be opened.

// The file is open. Find out how long it is.

UInt64* theLength = NULL;

UInt32 theParamLen = 0;

theErr = QTSS_GetValuePtr(theFileObject, qtssFlObjLength, 0,

(void**)&theLength, &theParamLen);

if (theErr != QTSS_NoErr)

return theErr;

if (theParamLen != sizeof(UInt64))

return QTSS_RequestFailed;;

170
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

// Allocate memory for the file data.

*outData = new char[*theLength + 1];

*outDataLen = *theLength;

// Read the data

UInt32 recvLen = 0;

theErr = QTSS_Read(theFileObject, *outData, *outDataLen, &recvLen);

if ((theErr != QTSS_NoErr) || (recvLen != *outDataLen))

{

delete *outData;

return theErr;

}

// Close the file.

(void)QTSS_CloseFileObject(theFileObject);

}

Implementing a QTSS File System Module
A file system module provides a way for QTSS modules to read files in a specific file
system regardless of that file system’s type. Typically, a file system module handles
a subset of paths in a file system, but it may handle all paths on the system. If a file
system module handles only a certain subset of paths, it usually handles all paths
inside a certain root path. For example, a module handling files stored in a certain
database may only respond to paths that begin with /Local/database_root/.

Implementing a QTSS file system module begins with registering for one of the
following roles:

� Open File Preprocess role, which the server calls in response to a module (or the
server) that calls the QTSS_OpenFileObject callback routine to open a file. If the
module does not handle files of the specified type, the module immediately
returns QTSS_FileNotFound. If the module handles the files of the specified type,
it opens the file, updates a file object provided by the server and returns
QTSS_NoErr. If an error occurs during this setup period, the module returns
QTSS_RequestFailed. Once the module returns QTSS_NoErr, it should be prepared
to handle the Advise File, Read File, Request Event File and Close File roles for

C H A P T E R 3

Tasks

171
  Apple Computer, Inc. August 29, 2003

the opened file. The server calls each module registered in the Open File
Preprocess role until one of the called modules returns QTSS_NoErr or
QTSS_RequestFailed.

� Open File role, which the server calls in response to a module (or the server) that
calls the QTSS_OpenFileObject callback routine for which all modules handling
the Open File Preprocess role return QTSS_FileNotFound. Only one module can
register for the Open File role. Like modules called for the Open File Preprocess
role, the module called for the Open File role must determine whether it can
handle the specified file. It it can, it opens the file, updates the file object
provided by the server and returns QTSS_NoErr. If an error occurs during the
setup process or if the module cannot handle the specified file, the module
returns QTSS_RequestFailed or QTSS_FileNotFound, respectively.

A file system module should register in the Open File Preprocess role if it handles a
subset of files available on the system. For instance, a file system module that serves
files out of a database may only handle files rooted at a certain path. All other paths
should fall through to other modules that handle other paths.

A file system module should register in the Open File role if it implements the
default file system on a system. For instance, on a UNIX system the module
handling the Open File Role would probably provide an interface between the
server and the standard POSIX file system.

Once a module returns QTSS_NoErr from either the Open File Role or the Open File
Preprocess role, it is responsible for the newly opened file. It should be prepared to
handle the following roles on behalf of that file:

� Advise File role, which is called in response to a module (or the server) calling
the QTSS_Advise callback for a file object. The QTSS_Advise callback is made to
inform the file system module that a specific region of the file will be needed
soon.

� Read File role, which is called in response to a module (or the server) calling the
QTSS_Read callback for a file object. It is the responsibility of a file system module
handling this role to make a best-effort attempt to fill the buffer provided by the
caller with the appropriate file data.

� Request Event File role, which is called in response to a module (or the server)
calling the QTSS_RequestEvent callback on a file object.

172
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

� Close File role, which is called in response to a module (or the server) calling the
QTSS_Close callback on a file object. The module should clean up any file-system
and module-specific data structures for this file. This role is always the last role
a file system module will be invoked in for a given file object.

Note: Modules do not need to explicitly register for the Advise
File, Read File, Request Event File or Close File roles in order to
handle them. Instead, returning QTSS_NoErr or
QTSS_RequestFailed from one of the open file roles constitutes
taking ownership for a specific file object, and therefore means
that the module has implicitly registered for those roles.

File System Module Roles

This section describes the file system module roles. The roles are:

� “Open File Preprocess Role” (page 172) which is called to process requests to
open files.

� “Open File Role” (page 174) which is the default role that is called when none of
the modules registered for the Open File Preprocess role opens the specified file.

� “Advise File Role” (page 175) which is called to tell a file system module about
the caller’s I/O preferences.

� “Read File Role” (page 176) which is called to read a file.

� “Close File Role” (page 177) which is called to close a file.

� “Request Event File Role” (page 178) which is called to request notification
when a file becomes available for reading or writing.

Open File Preprocess Role

The server calls the Open File Preprocess role in response to a module that calls the
QTSS_OpenFileObject callback routine to open a file. It is the responsibility of a
module handling this role to determine whether it handles the type of file specified
to be opened. If it does and if the file exists, the module opens the file, updates the
file object provided by the server, and returns QTSS_NoErr.

When called, an Open File Preprocess role receives a QTSS_OpenFile_Params
structure, which is defined as follows:

typedef struct

C H A P T E R 3

Tasks

173
  Apple Computer, Inc. August 29, 2003

{

char* inPath;

QTSS_OpenFileFlags inFlags;

QTSS_Object inFileObject;

} QTSS_OpenFile_Params;s

inPath

A pointer to a null-terminated C string containing the full path to the
file that is to be opened.

inFlags

Open flags specifying whether the module that called
QTSS_OpenFileObject can handle asynchronous read operations
(qtssOpenFileAsync) or expects to read the file in order from
beginning to end (qtssOpenFileReadAhead).

inFileObject

A QTSS object that the module updates if it can open the file
specified by inPath.

If the file is a file the module handles, the module should do whatever work is
necessary to open and set up the file. It can use inFileObject to store any
module-specific information for that file. In addition, the module should set the
value of the file object’s qtssFlObjLenth and qtssFlObjModDate attributes.

If the file is a file the module handles but an error occurs while attempting to set up
the file, the module should return QTSS_RequestFailed.

If every module registered for the Open File Preprocess role returns
QTSS_FileNotFound, the server calls the one module that is registered in the Open
File role.

A module that wants to be called in the Open File Preprocess role must in its
Register role call QTSS_AddRole and specify QTSS_OpenFilePreprocess_Role as the
role. Modules that register for this role must also handle the following roles, but
they do not need to explicitly register for them: Advise File, Read File, Request
Event File, and Close File.

174
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Open File Role

The server calls the module registered for the Open File role when all modules
registered for the Open File Preprocess role have been called and have returned
QTSS_FileNotFound. Only one module can be registered for the Open File role, and
that module is the first module that registers for this role when QTSS starts up.

Like modules called for the Open File Preprocess role, it is the responsibility of a
module handling the Open File role to determine whether it handles the type of file
specified to be opened. If it does and if the file exists, the module opens the file,
updates the file object provided by the server, and returns QTSS_NoErr.

When called, the module receives a QTSS_OpenFile_Params structure, which is
defined as follows:

typedef struct

{

char* inPath;

QTSS_OpenFileFlags inFlags;

QTSS_Object inFileObject;

} QTSS_OpenFile_Params;

inPath

A pointer to a null-terminated C string containing the full path to the
file that is to be opened.

inFlags

Open flags specifying whether the module that called
QTSS_OpenFileObject can handle asynchronous read operations
(qtssOpenFileAsync) or expects to read the file in order from
beginning to end (qtssOpenFileReadAhead).

inFileObject

A QTSS object that the module updates if it can open the file
specified by inPath.

If the file is a file the module handles, the module should do whatever work is
necessary to open and set up the file. It can use inFileObject to store any
module-specific information for that file. In addition, the module should set the
value of the file object’s qtssFlObjLength and qtssFlObjModDate attributes.

If the file is a file the module handles but an error occurs while attempting to set up
the file, the module should return QTSS_RequestFailed.

C H A P T E R 3

Tasks

175
  Apple Computer, Inc. August 29, 2003

A module that wants to be called in the Open File role must in its Register role call
QTSS_AddRole and specify QTSS_OpenFile_Role as the role. Modules that register for
this role must also handle the following roles, but they do not need to explicitly
register for them: Advise File, Read File, Request Event File, and Close File.

Advise File Role

The server calls modules for the Advise File role in response to a module (or the
server) calling the QTSS_Advise callback routine for a file object in order to inform the
file system module that the calling module will soon read the specified section of
the file.

When called, an Advise File role receives a QTSS_AdviseFile_Params structure,
which is defined as follows:

typedef struct

{

QTSS_Object inFileObject;

UInt64 inPosition;

UInt32 inSize;

} QTSS_AdviseFile_Params;

inFileObject

The file object for the opened file. The file system module uses the file
object to determine the file for which the QTSS_Advise callback
routine was called.

inPosition

The offset in bytes from the beginning of the file that represents the
beginning of the section that is soon to be read.

inSize

The number of bytes that are soon to be read.
The file system module is not required to do anything while handling this role, but
it may take this opportunity to read the specified section of the file.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

176
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Read File Role

The server calls modules for the Read File role in response to a module (or the
server) calling the QTSS_Read callback routine for a file object in order to read the
specified file.

When called, a Read File role receives a QTSS_ReadFile_Params structure, which is
defined as follows:

typedef struct

{ QTSS_Object inFileObject;

UInt64 inFilePosition;

void* ioBuffer;

UInt32 inBufLen;

UInt32* outLenRead;

} QTSS_ReadFile_Params;

inFileObject

The file object for the file that is to be read. The file system module
uses the file object to determine the file for which the QTSS_Read
callback routine was called.

inFilePosition

The offset in bytes from the beginning of the file that represents the
beginning of the section that is to be read. The server maintains the
file position as an attribute of the file object, so the file system module
does not have to cache the file position internally and can obtain the
position at any time.

ioBuffer

A pointer to the buffer in which the file system module is to place the
data that is read.

ioBufLen

The length of the buffer pointed to by ioBuffer.
outLenRead

The number of bytes actually read.
The file system module should make a best-effort attempt to fill the buffer pointed
to by ioBuffer with data from the file that is being read starting with the position
specified by inFilePosition.

C H A P T E R 3

Tasks

177
  Apple Computer, Inc. August 29, 2003

If the file was opened with the qtssOpenFileAsync flag, the module should return
QTSS_WouldBlock if reading the data will cause the thread to block. Otherwise, the
module should block the thread until all of the data has become available. When the
buffer pointed to by ioBuffer is full or the end of file has been reached, the file
system module should set outLenRead to the number of bytes read and return
QTSS_NoErr.

If the read fails for any reason, the file system module handling this role should
return QTSS_RequestFailed.

File system modules do not need to explicitly register for this role.

Close File Role

The server calls modules for the Close File role in response to a module (or the
server) calling the QTSS_CloseFile callback routine for a file object in order to close
a file that has been opened.

When called, a Close File role receives a QTSS_CloseFile_Params structure, which is
defined as follows:

typedef struct

{

QTSS_Object inFileObject;

} QTSS_CloseFile_Params;

inFileObject

The file object for the file that is to be closed. The file system module
uses the file object to determine the file for which the QTSS_Close
callback routine was called.

A module handling this role should dispose of any data structures that it has
created for the file that is to be closed.

This role is always the last role for which a file system module will be invoked for
any given file object.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

178
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Request Event File Role

The server calls modules for the Request Event File role in response to a module (or
the server) calling the QTSS_RequestEvent callback routine. If a module or the server
calls the QTSS_OpenFileObject callback routine and specifies the qtssOpenFileAsync
flag, the file system module handling that file object may return QTSS_WouldBlock
from its Read File role. When that occurs, the caller of QTSS_Read may call
QTSS_RequestEvent callback to tell the server that the caller of QTSS_Read wants to be
notified when the data becomes available for reading.

When called, a Request Event File role receives a QTSS_RequestEventFile_Params
structure, which is defined as follows:

typedef struct

{

QTSS_Object inFileObject;

QTSS_EventType inEventMask;

} QTSS_RequestEventFile_Params;

inFileObject

The file object for the file for which notifications are requested. The
file system module uses the file object to determine the file for which
the QTSS_RequestEvent callback routine was called.

inEventMask

A mask specifying the type of events for which notification is
requested. Possible values are QTSS_ReadableEvent and
QTSS_WriteableEvent.

If the file system that the file system module is implementing supports notification,
the file system module should do whatever setup is necessary to receive an event
for the file for which the QTSS_RequestEvent callback routine was called. When the
file becomes readable, the file system module should call the QTSS_SignalStream
callback routine and pass the stream reference for this file object (which can be
obtained through the file object’s qtssFlObjStream attribute). Calling the
QTSS_SignalStream callback routine tells the server that the caller of
QTSS_RequestEvent should be notified that the file is now readable.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

C H A P T E R 3

Tasks

179
  Apple Computer, Inc. August 29, 2003

Sample Code for the Open File Role

The sample code in Listing 3-8 handles the Open File role, but it could also be used
to handle the Open File Preprocess role. This code uses the POSIX file system layer
as the file system and does not support asynchronous I/O.

Listing 3-8 Handling the Open File Role

QTSS_Error OpenFile(QTSS_OpenFile_Params* inParams)

{

// Use the POSIX open call to attempt to open the specified file.

// If it doesn't exist, return QTSS_FileNotFound

int theFile = open(inParams->inPath, O_RDONLY);

if (theFile == -1)

return QTSS_FileNotFound;

// Use the POSIX stat call to get the length and the modification date

// of the file. This information must be set in the QTSS_FileObject

// by every file system module.

UInt64 theLength = 0;

time_t theModDate = 0;

struct stat theStatStruct;

if (::fstat(fFile, &theStatStruct) >= 0)

{

theLength = buf.st_size;

theModDate = buf.st_mtime;

}

else

{

::close(theFile);

return QTSS_RequestFailed; // Stat failed

}

// Set the file length and the modification date attributes of this file

// object before returning

(void)QTSS_SetValue(inParams->inFileObject, qtssFlObjLength, 0,

&theLength, sizeof(theLength));

180
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

(void)QTSS_SetValue(inParams->inFileObject, qtssFlObjModDate, 0,

&theModDate, sizeof(theModDate));

// Place the file reference in a custom attribute in the QTSS_FileObject.

// This way, we can easily get the file reference in other role handlers,

// such as the QTSS_ReadFile_Role and the QTSS_CloseFile_Role.

QTSS_Error theErr = QTSS_SetValue(inParams->inFileObject, sFileRefAttr,

0,

&theFile, sizeof(theFileSource));

if (theErr != QTSS_NoErr)

{

::close(theFile);

return QTSS_RequestFailed;

}

return QTSS_NoErr;

}

Implementing Asynchronous Notifications

If a module, or the server, calls the QTSS_OpenFileObject and specifies the
qtssOpenFileAsync flag, the file system module handling that file object may return
QTSS_WouldBlock from its QTSS_ReadFile_Role handler. Once that happens, the caller
of QTSS_Read may want to be notified when the requested data becomes available for
reading. This is possible by calling the QTSS_RequestEvent callback, which tells the
server that the caller would like to be notified when data is available to be read from
the file.

Not all file systems support notification mechanisms, and if they do, the notification
mechanisms are particular to each file system architecture. Therefore, whether a file
system module supports notifications is at the discretion of the developer of the file
system module. In general it is better for a file system module to support
asynchronous notifications and not block in QTSS_ReadFile_Role because blocking
on one file operation may disrupt service for many of the server’s clients.

Two facilities allow file system modules to implement notifications:

C H A P T E R 3

Tasks

181
  Apple Computer, Inc. August 29, 2003

� QTSS_RequestEventFile_Role, which is called in response to a module (or the
server) calling the QTSS_RequestEvent callback on a file object. Modules do not
need to explicitly register for this role. If a module doesn’t implement
asynchronous notifications, it should return QTSS_RequestFailed from this role.
If a module does implement asynchronous notifications, it should do whatever
setup is necessary to receive an event for this file when the file becomes readable.

� QTSS_SendEventToStream callback, called by a file system module when a file
does become readable. Calling QTSS_SendEventToStream tells the server that the
caller of QTSS_RequestEvent should be notified that the file is now readable.

Using the Admin Protocol

You can use the Admin protocol to communicate with QTSS. The Admin Protocol
relies on the URI mechanism defined by RFC 2396 for specifying a container entity
using a path and on the request and response mechanism for the Hypertext Transfer
Protocol defined in RFC 1945.

The server’s internal data is mapped to a hierarchical tree of element arrays. Each
element is a named type including a container type for retrieval of sub-node
elements.

The server state machine and database can be accessed through a regular
expression. The Admin Protocol abstracts the QTSS module API to handle data
access and in some cases to provide data access triggers for execution of server
functions.

Server streaming threads are blocked while the Admin Protocol accesses the
server’s internal data. To minimize blocking, the Admin Protocol allows scoped
access to the server’s data structures by allowing specific URL paths to any element.

The Admin Protocol uses the HTTP GET as the request and response method. At
the end of each response, the session between client and server is closed. The Admin
Protocol also supports the Authorization request header field as described in RFC
1945, section 10.2.

182
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Access to Server Data
The Admin Protocol uses URIs to specify the location of server data. The following
URI references the top level of the server’s hierarchical data tree using a simple
HTTP GET request.

GET /modules/admin

Request Syntax
A valid request is an absolute reference followed by the server URI. An absolute
reference is a path beginning with a forward slash character (/). A path represents
the server’s virtual hierarchical data structure of containers and is expressed as a
URL.

Here is the request syntax:

[absolute URL]?[parameters=”values”]+[command=”value”]+[“option”=”value”]

The following rules govern URIs:

� /path is an absolute reference.

� path/* is defined as all elements contained in the “path” container.

� An asterisk (*) in the current URL location causes each element in that location
to be iterated.

� A question mark (?) indicates that options follow. Options are specified as
name=”value” pairs delimited by the plus (+) character.

� Space and tab characters are treated as stop characters.

� Values can be enclosed by the double quotation characters (“). Enclosing double
quotation characters is required for values that contain spaces and tabs.

� These characters cannot be used: period (.), two periods (..), and semicolon (;).

Here is an example of a request:

GET /modules/admin/server/qtssSvrClientSessions?parameters=rt+command=get

C H A P T E R 3

Tasks

183
  Apple Computer, Inc. August 29, 2003

Request Functionality
Requests can contain an array iterator, a name lookup, a recursive tree walk, and a
filtered response. All functions can execute in a single URI query.

Here is a request that gets the stream time scale and stream payload name for every
stream in every session:

GET /modules/admin/server/qtssSvrClientSessions/*/qtssCliSesStreamObjects?

parameters=r+command=get+filter1=qtssRTPStrTimescale+filter2=qtssRTPStrPaylo

adName

where

� * iterates the array of sessions

� r in parameter=rt specifies a recursive walk and t specifies that data types are to
be included in the result

� filter=qtssRTPStrTimescale specifies that the stream time scale is to be returned

� filter2=qtssRTPStrPayloadName specifies that the stream payload is to be
returned

This request gets all server module names and their descriptions:

GET /modules/admin/server/qtssSvrModuleObjects?

parameters=r+command=get+filter2=qtssModDesc+filter1=qtssModName

The following example does a recursive search and gets all server attributes and
their data types:

GET /modules/admin/server/?parameters=rt

Note: Repeated recursive searches should be avoided because
they impact server performance.

The following examples return server attributes and their paths:

GET /modules/admin/server/*

GET /modules/admin/server/qtssSvrPreferences/*

184
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Data References
All elements are arrays. Single element arrays may be referenced in any of the
following ways:

� path/element

� path/element/

� path/element/*

� path/element/1

The references listed above are all evaluated as the same request.

Request Options
URIs that do not include a question mark (?) default to a GET request option.

URIs that include a question mark (?) must be followed by a
“command=command-option” request option, where command-option is GET, SET, ADD, or
DEL. URIs may also be followed by a “parameters=parameter-option” that refines the
action of the command option.

Request options are not case-sensitive, but request option values are case-sensitive.

The Admin Protocol ignores any request option that it does not recognize as well
any request options that a command does not require.

Command Options
The Admin Protocol recognizes the following command options:

� GET, described in the section “GET Command Option” (page 185)

� SET, described in the section “SET Command Option” (page 185)

� DEL, described in the section “DEL Command Option” (page 185)

� ADD, described in the section “ADD Command Option” (page 186)

Any unknown command option is reported as an error.

C H A P T E R 3

Tasks

185
  Apple Computer, Inc. August 29, 2003

The effect of a command option may be modified by in the inclusion of one or more
of the following modifiers:

� value — used to specify a value

� type — used to specify a data type

� name — used to specify an element name

GET Command Option

The GET command option gets the data identified by the URI. It is the default
command option. For that reason, it does not have to be specified, as shown in the
following example:

GET /modules/admin/example_count

The GET command does not require any request options. If any request options were
specified, they would be ignored.

SET Command Option

The SET command option sets the data identified by the URI. No value checking is
performed. Conversion between the text value and the actual value is type-specific.
Here are two examples of the SET command option:

GET /modules/admin/example_count?command=SET+value=5

GET /modules/admin/maxcount?command=SET+value=5+type=SInt32

If the type option is included in the command, type checking of the server element
type and the set type is performed. If the types do not match, an error is returned
and the command fails.

DEL Command Option

The DEL command option deletes the element referenced by the URL and any data
it contains. Here is an example:

GET /modules/admin/maxcount?command=DEL

186
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

ADD Command Option

The ADD command option adds the data specified by the URI to the specified
element.

If the end of the URL is an element, the ADD command performs an add to the array
of elements referenced by the element name. The following example adds 6 to
example_count if the data type of example_count is SInt16:

GET /modules/admin/example_count?command=ADD+value=6+type=SInt16

If the element at the end of the URL is a QTSS_Object container, the ADD command
option adds the element to the container. The following example adds 5 to the
element whose name is maxcount if the data type of maxcount is SInt16:

GET /modules/admin/?command=ADD+value=5+name=maxcount+type=SInt16

Parameter Options

Parameter options are single characters without delimiters that appear after the
URL.

The Admin Protocol recognizes the following parameter options:

� r — Walk downward in the hierarchy starting at end of the URL. Recursion
should be avoided if “*” iterators or direct URL access to elements can be used
instead.

� v — Return the full path in name.

� a — Return the access type.

� t — Return the data type of value.

� d — Return debugging information if an error occurs.

� c — Return the count of elements in the path.

Here is an example that uses the r and t parameter options to recursively get the
data type of all qtssSvrClientSessions:

GET /modules/admin/server/qtssSvrClientSessions?parameters=rt+command=get

C H A P T E R 3

Tasks

187
  Apple Computer, Inc. August 29, 2003

Attribute Access Types
The following access types are used to control access to server data:

� r — Read access type

� w — Write access type

� p — Preemptive safe access type

Data Types
Data types can be any server-allowed text value. New data types can be defined and
returned by the server, so data types are not limited to the basic set listed here:

Values of type QTSS_Object, pointers, and unknown data types always converted to
a host-ordered string of hexadecimal values. Here is an example of a hexadecimal
value result:

unknown_pointer=halogen; type=void_pointer

Server Responses
This section describes the data that is returned in response to a request. The
information on response data is organized in the following sections:

� “Unauthorized Response” (page 188)

� “OK Response” (page 188)

� “Response Data” (page 188)

� “Array Values” (page 189)

� “Response Root” (page 190)

� “Errors in Responses” (page 190)

� “Request and Response Examples” (page 191)

UInt8 SInt16 UInt64 Float64 char

SInt8 UInt32 SInt64 Bool8 QTSS_Object

UInt16 SInt32 Float32 Bool16 void_pointer

188
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Unauthorized Response

Here is an example of an unauthorized response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="QTSS/modules/admin"

Server: QTSS

Connection: Close

Content-Type: text/plain

OK Response

Here is an example of an “OK” response:

HTTP/1.0 200 OK

Server: QTSS/4.0 [v408]-MacOSX

Connection: Close

Content-Type: text/plain

Container="/"

admin/

error:(0)

All OK responses end with error:(0).

Response Data

All entity references in response data follow this form:

[NAME=VALUE];[attribute=”value“],[attribute=”value”]

where brackets ([]) indicate that the enclosed response data is optional. Therefore,
the response data may take the following forms:

NAME=VALUE

NAME=VALUE;attribute=”value”

NAME=VALUE;attribute=”value”,attribute=”value”

All container references follow this form:

[NAME/];[attribute=”value”],[attribute=”value”]

C H A P T E R 3

Tasks

189
  Apple Computer, Inc. August 29, 2003

where brackets ([]) indicate that the enclosed response data is optional. Therefore,
response data may take the following forms:

NAME/

NAME/;attribute=”value”

NAME;attribute=”value”,attribute=”value“

The order of appearance of container references and the container’s entity
references are important. This is especially true when the response is a recursive
walk of a container hierarchy.

Each new level in the hierarchy must begin with a Container= reference. Each
container list of elements must be a complete list of the contained elements and any
containers. The appearance of a Container= reference indicates the end of a previous
container’s contents and the beginning of a new container.

This example shows how each new container is identified with a unique path:

Container="/level1/"

field1="value"

field2="value"

level2a/

level2b/

Container="/level1/level2a/"

field1="value"

level3a/

level3b/

Container="/level1/level2a/level3a"

field1="value"

Container="/level1/level2a/level3b"

Container="/level1/level2b/"

field1="value"

level3a/

Container="/level1/level2b/level3a/"

field1="value"

Array Values

For arrays of elements, a numerical value represents the index. Arrays are
containers. Here is an example:

190
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Container="/level1/"

field1="value"

field2="value"

array1/

Container="/level1/array1/"

1=value

2=value

Array elements may be containers, as shown in this example:

Container="/level1/array1/"

1/

2/

3/

Container="/level1/array1/1/"

field1="value"

field2="value"

Container="/level1/array1/2/"

Container="/level1/array1/3/"

field1="value"

Response Root

The root for responses is /admin.

Errors in Responses

For each response, the error state for the request is reported at the end of the data.
Here are some examples:

Error:(0) indicates that no error occurred

Error:(404) indicates that no data was found

The number enclosed by parentheses is an HTTP error code followed by an error
string when debugging is turned on using the "parameters=d" query option. Here
is an example:

error:(404);reason="No data found"

C H A P T E R 3

Tasks

191
  Apple Computer, Inc. August 29, 2003

Request and Response Examples

An easy way to make requests is to use a web browser and a URL like this:

http://IP-address:554/modules/admin/?parameters=a+command=get

The following example uses basic authentication and shows the HTTP response
headers:

Request: GET /modules/admin?parameters=a+command=get

Authorization: Basic QWXtaW5pT3RXYXRvcjXkZWZhdWx0

Response:

HTTP/1.0 200 OK

Server: QTSS/4.0 [v408]-MacOSX

Connection: Close

Content-Type: text/plain

Container="/"

admin/;a=r

error:(0)

The following recursive request gets the value of each element in /modules/admin:

GET /modules/admin?command=get+parameters=r

The following recursive request returns the access type and data type for the value
of each element in /modules/admin:

GET /modules/admin?command=get+parameters=rat

The following request gets the elements in /modules/admin. Note that the GET
command option is not required because request options are not present.

GET /modules/admin/*

A request like the following can be used to monitor the session list:

GET /modules/admin/server/qtssSvrClientSessions/*

The response is a list of unique qtssSvrClientSessions session IDs. Here is an
example::

192
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Container="/admin/server/qtssSvrClientSessions/"

12/

2/

4/

8/

error:(0)

The following request gets the indexes for the qtssCliSesStreamObjects object,
which is an indexed array of streams:

GET /modules/admin/server/qtssSvrClientSessions/*/qtssCliSesStreamObjects/*

The response might look like this:

Container="/admin/server/qtssSvrClientSessions/3/qtssCliSesStreamObjects/"

0/

1/

error:(0)

Here is another request:

GET /modules/admin/server/qtssSvrClientSessions/3/qtssCliSesStreamObjects/0/

*

And here is a typical response:

qtssRTPStrTrackID="4"

qtssRTPStrSSRC="683618521"

qtssRTPStrPayloadName="X-QT/600"

qtssRTPStrPayloadType="1"

qtssRTPStrFirstSeqNumber="-7111"

qtssRTPStrFirstTimestamp="433634204"

qtssRTPStrTimescale="600"

qtssRTPStrQualityLevel="0"

qtssRTPStrNumQualityLevels="3"

qtssRTPStrBufferDelayInSecs="3.000000"

qtssRTPStrFractionLostPackets="0"

qtssRTPStrTotalLostPackets="52"

qtssRTPStrJitter="0"

qtssRTPStrRecvBitRate="1526072"

qtssRTPStrAvgLateMilliseconds="501"

qtssRTPStrPercentPacketsLost="0"

C H A P T E R 3

Tasks

193
  Apple Computer, Inc. August 29, 2003

qtssRTPStrAvgBufDelayInMsec="30"

qtssRTPStrGettingBetter="0"

qtssRTPStrGettingWorse="0"

qtssRTPStrNumEyes="0"

qtssRTPStrNumEyesActive="0"

qtssRTPStrNumEyesPaused="0"

qtssRTPStrTotPacketsRecv="6763"

qtssRTPStrTotPacketsDropped="0"

qtssRTPStrTotPacketsLost="0"

qtssRTPStrClientBufFill="0"

qtssRTPStrFrameRate="0"

qtssRTPStrExpFrameRate="3903"

qtssRTPStrAudioDryCount="0"

qtssRTPStrIsTCP="false”

qtssRTPStrStreamRef="18861508"

qtssRTPStrCurrentPacketDelay="-2"

qtssRTPStrTransportType="0"

qtssRTPStrStalePacketsDropped="0"

qtssRTPStrTimeFlowControlLifted="974373815109"

qtssRTPStrCurrentAckTimeout="0"

qtssRTPStrCurPacketsLostInRTCPInterval="52"

qtssRTPStrPacketCountInRTCPInterval="689"

QTSSReflectorModuleStreamCookie=(null)

qtssNextSeqNum=(null)

qtssSeqNumOffset=(null)

QTSSSplitterModuleStreamCookie=(null)

QTSSFlowControlModuleLossAboveTol="0"

QTSSFlowControlModuleLossBelowTol="3"

QTSSFlowControlModuleGettingWorses="0"

error:(0)

Here is an request that returns the IP addresses of connected clients:

GET /modules/admin/server/qtssSvrClientSessions/*/

qtssCliRTSPSessRemoteAddrStr

And here is a typical response:

Container="/admin/server/qtssSvrClientSessions/5/

"qtssCliRTSPSessRemoteAddrStr=17.221.40.1

Container="/admin/server/qtssSvrClientSessions/6/

"qtssCliRTSPSessRemoteAddrStr=17.221.40.2

194
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

Container="/admin/server/qtssSvrClientSessions/8/

"qtssCliRTSPSessRemoteAddrStr=17.221.40.3

Container="/admin/server/qtssSvrClientSessions/14/

"qtssCliRTSPSessRemoteAddrStr=17.221.40.4

error:(0)

Changing Server Settings
To change a server setting, the entity name and the value to be set are specified in
the request body. If a match is made on the URL base and entity name at the current
container level and if the setting is writable, the value is set.

base = /base/container

name = value

/base/container/name="value"

Getting and Setting Preferences
Preferences paths are useful for getting and setting a server or module preference.
Setting a preference causes the preference’s new value to be flushed to the server’s
XML preference file. The new value takes effect immediately.

Server preferences are stored in /modules/admin/server/qtssSvrPreferences.
Module preferences are stored in /modules/admin/server/qtssSvrModuleObjects/*/
qtssModPrefs/.

The elements defined in the qtssSvrPreferences object can only be modified — they
cannot be deleted.

The elements defined in qtssModPrefs can be added to, deleted, and modified.

A module or the server can automatically restore some deleted elements if the
elements are needed by a module or the server. When applied to a qtssModPrefs
element, the ADD, DEL, and SET commands cause the streaming server’s XML
preference file to be rewritten.

C H A P T E R 3

Tasks

195
  Apple Computer, Inc. August 29, 2003

Getting and Changing the Server’s State
The qtssSvrState attribute controls the server’s state. The path is
/modules/admin/server/qtssSvrState. It can be modified as a UInt32 with the
following values.

qtssStartingUpState = 0,

qtssRunningState = 1,

qtssRefusingConnectionsState = 2,

qtssFatalErrorState = 3,

qtssShuttingDownState = 4,

qtssIdleState = 5

196
  Apple Computer, Inc. August 29, 2003

C H A P T E R 3

Tasks

197
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

4 QuickTime Streaming Server
Module Reference

This chapter describes the callback rotuines and data types that modules use to call
the QuickTime Streaming Server. The programming interface for QuickTime
Streaming Server modules is declared in the header file QTSS.h.

QTSS Callback Routines

This section describes the QTSS callback routines that modules call to obtain
information from the server, allocate and deallocate memory, create objects, get and
set attribute values, and manage client and RTSP sessions. The callbacks are
organized into the following sections:

� “QTSS Utility Callback Routines” (page 198)

� “QTSS Object Callback Routines” (page 201)

� “QTSS Attribute Callback Routines” (page 204)

� “Stream Callback Routines” (page 223)

� “File System Callback Routines” (page 230)

� “Service Callback Routines” (page 232)

� “RTSP Header Callback Routines” (page 234)

� “RTP Callback Routines” (page 238)

198
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

QTSS Utility Callback Routines
Modules call the following callback routines to register for roles, allocate and
deallocate memory, get the value of the server’s internal timer, and to convert a
value from the internal timer to the current time:

� QTSS_AddRole (page 198)

� QTSS_New (page 199)

� QTSS_Delete (page 199)

� QTSS_Milliseconds (page 200)

� QTSS_MilliSecsTo1970Secs (page 200)

QTSS_AddRole

Adds a role.

QTSS_Error QTSS_AddRole(

QTSS_Role inRole);

Parameter Descriptions
inRole

On input, a value of type QTSS_Role (page 244) that specifies the role
that is to be added.

result

A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddRole is called from a role other than the Register role,
QTSS_RequestFailed if the module is registering for the RTSP Request
role and a module is already registered for that role, and
QTSS_BadArgument if the specified role does not exist.

Discussion
The QTSS_AddRole callback routine tells the server that your module can be called for
the role specified by inRole.

The QTSS_AddRole callback can only be called from a module’s Register role. For this
version of the server, you can add the following roles:
QTSS_ClientSessionClosing_Role, QTSS_ErrorLog_Role, QTSS_Initialize_Role,

C H A P T E R 4

QuickTime Streaming Server Module Reference

199
  Apple Computer, Inc. August 29, 2003

QTSS_OpenFilePreprocess_Role, QTSS_OpenFile_Role, QTSS_RTSPFilter_Role,
QTSS_RTSPRoute_Role, QTSS_RTSPPreProcessor_Role, QTSS_RTSPRequest_Role,

QTSS_RTSPPostProcessor_Role, QTSS_RTPSendPackets_Role,

QTSS_RTCPProcess_Role, QTSS_Shutdown_Role.

QTSS_New

Allocates memory.

void* QTSS_New(

FourCharCode inMemoryIdentifier,

UInt32 inSize);

Parameter Descriptions
inMemoryIdentifier

On input, a value of type FourCharCode that will be associated with
this memory allocation. The server can track the allocated memory
to make debugging memory leaks easier.

inSize

On input, a value of type UInt32 that specifies in bytes the amount of
memory to be allocated.

result

None.

Discussion
The QTSS_New callback routine allocates memory. QTSS modules should call
QTSS_New whenever it needs to allocate memory dynamically.

To delete the memory that QTSS_New allocates, call QTSS_Delete (page 199).

QTSS_Delete

Deletes memory.

void* QTSS_Delete(void* inMemory);

200
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Parameter Descriptions
inMemory

On input, a pointer to an arbitrary value that specifies in bytes the
amount of memory to be deleted.

result

None.

Discussion
The QTSS_Delete callback routine deletes memory that was previously allocated by
QTSS_New (page 199).

QTSS_Milliseconds

Gets the current value of the server’s internal clock.

QTSS_TimeVal QTSS_Milliseconds();

Parameter Descriptions
result

The value of the server’s internal clock in milliseconds since
midnight January 1, 1970.

Discussion
The QTSS_Milliseconds callback routine gets the current value of the server’s
internal clock since midnight January 1, 1970. Unless otherwise noted, all
millisecond values that the server provides in attributes are obtained from this
clock.

QTSS_MilliSecsTo1970Secs

Converts a value obtained from the server’s internal clock to the current time.

time_t QTSS_MilliSecsTo1970Secs(QTSS_TimeVal inQTSS_Milliseconds);

C H A P T E R 4

QuickTime Streaming Server Module Reference

201
  Apple Computer, Inc. August 29, 2003

Parameter Descriptions
inQTSS_Milliseconds

On input, a value of type QTSS_TimeVal obtained by calling
QTSS_Milliseconds().

result

A value of type time_t containing the current time.

Discussion
The QTSS_MilliSecsto1970Secs callback routine converts a value obtained by calling
QTSS_Milliseconds (page 200) to the current time.

QTSS Object Callback Routines
Modules call the attribute callback routines to work with attributes. The callbacks
are:

� QTSS_CreateObjectType (page 201)

� QTSS_CreateObjectValue (page 202)

� QTSS_LockObject (page 203)

� QTSS_UnLockObject (page 204)

QTSS_CreateObjectType

Creates an object type.

QTSS_Error QTSS_CreateObjectType(

QTSS_ObjectType* outType);

Parameter Descriptions
outType

On input, a pointer to a value of type QTSS_ObjectType (page 243).
result

A result code. Possible values are QTSS_NoErr, QTSS_FailedRequest
too many object types already exist, and QTSS_OutOfState if
QTSS_CreateObjectType an attribute of the specified name already
exists.

202
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Discussion
The QTSS_CreateObjectType callback routine creates a new object type and provides
a pointer to it. Static attributes can be added to the object type by calling
QTSS_AddStaticAttribute (page 207). Instance attributes can be added to instances
of objects of the new object type.

The QTSS_AddStaticAttribute callback can only be called from the Register role. Call
QTSS_SetValue (page 218) to set the value of an added attribute and
QTSS_RemoveValue (page 217) to remove the value of an added attribute.

This callback may only be called from the Register role.

QTSS_CreateObjectValue

Creates a new object that is the value of another object’s attribute.

QTSS_Error QTSS_CreateObjectValue(

QTSS_Object inObject,

QTSS_AttributeID inID,

QTSS_ObjectType inType,

UInt32* outIndex,

QTSS_Object* outCreatedObject);

Parameter Descriptions
inObject

On input, a pointer to a value of type QTSS_ObjectType (page 243) that
specifies the object having an attribute whose value will be the
created object.

inID

On input, a value of type QTSS_AttributeID (page 242) that specifies
the attribute ID of the attribute whose value will be the created
object.

inType

On input, a value of type QTSS_ObjectType (page 243) that specifies
the object type of the object that is to be created.

outIndex

On output, a pointer to a value of type UInt32 that contains the index
of the created object.

C H A P T E R 4

QuickTime Streaming Server Module Reference

203
  Apple Computer, Inc. August 29, 2003

outCreatedObject

On output, a pointer to a value of type QTSS_ObjectType (page 243)s
that is the new object.

result

A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if
any parameter is invalid, and QTSS_ReadOnly if the attribute specified
by inID is a read-only attribute.

Discussion
The QTSS_CreateObjectValue callback routine creates an object that is the value of an
existing object’s attribute. The object specified by inObject is the “parent” object.

If the object specified by inObject is later locked by calling QTSS_LockObject
(page 203), the object pointed to by outCreatedObject is also locked.

QTSS_LockObject

Locks an object.

QTSS_Error QTSS_LockObject(

QTSS_Object inObject);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object that is to be locked.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if the specified object instance does not exist.

Discussion
The QTSS_LockObject callback routine locks the specified object so that accesses to
the object’s attributes from other threads will block. Call QTSS_LockObject before
performing non-atomic updates on a variable that is pointed to by an attribute—as
set by calling QTSS_SetValuePtr (page 219)—or before getting the value of a
non-preemptive safe attribute.

Call QTSS_UnLockObject (page 204) to unlock the object.

204
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Objects created by QTSS_CreateObjectValue (page 202) are locked when the parent
object is locked.

QTSS_UnLockObject

Unlocks an object.

QTSS_Error QTSS_UnLockObject(

QTSS_Object inObject);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that is to be
unlocked.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if the specified object is not a valid object.

Discussion
The QTSS_UnLockObject callback routine unlocks an object that was previously
locked by QTSS_LockObject (page 203).

QTSS Attribute Callback Routines
Modules call the attribute callback routines to work with attributes. The callbacks
are:

� QTSS_AddInstanceAttribute (page 205)

� QTSS_AddStaticAttribute (page 207)

� QTSS_GetAttrInfoByID (page 208)

� QTSS_GetAttrInfoByIndex (page 209)

� QTSS_GetAttrInfoByName (page 210)

� QTSS_GetNumAttributes (page 211)

� QTSS_GetValue (page 212)

� QTSS_GetValueAsString (page 213)

C H A P T E R 4

QuickTime Streaming Server Module Reference

205
  Apple Computer, Inc. August 29, 2003

� QTSS_GetValuePtr (page 214)

� QTSS_IDForAttr (page 215)

� QTSS_RemoveInstanceAttribute (page 216)

� QTSS_RemoveValue (page 217)

� QTSS_SetValue (page 218)

� QTSS_SetValuePtr (page 219)

� QTSS_StringToValue (page 220)

� QTSS_TypeStringToType (page 221)

� QTSS_TypeToTypeString (page 222)

� QTSS_ValueToString (page 223)

QTSS_AddInstanceAttribute

Adds an instance attribute to the instance of an object.

QTSS_Error QTSS_AddInstanceAttribute(

QTSS_Object inObject,

char* inAttrName,

void* inUnused,

QTSS_AttrDataType inAttrDataType);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object to which the instance attribute is to be added.

inAttrName

On input, a pointer to a byte array that specifies the name of the
attribute that is to be added.

inUnused

Always NULL.
QTSS_AttrDataType

On input, a value of type QTSS_AttrDataType (page 246) that specifies
the data type of the attribute that is being added.

206
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

result

A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddInstanceAttribute is called from a role other than the
Register role, QTSS_BadArgument if the specified object type does not
exist, the attribute name is too long, or a parameter is not specified,
and QTSS_AttrNameExists if an attribute of the specified name already
exists.

Discussion
The QTSS_AddInstanceAttribute callback routine adds an attribute to the instance of
an object as specified by the inObject parameter. This callback can only be called
from the Register role.

When adding attributes to an object that a module as created, you must lock the
object first by calling QTSS_LockObject (page 203). Add the attributes and then call
QTSS_UnLockObject (page 204).

All added instance attributes have values that are implicitly readable, writable, and
preemptive safe, so their values can be obtained by calling QTSS_GetValueAsString
(page 213) and QTSS_GetValuePtr (page 214). You can also call QTSS_GetValue
(page 212) to get the value of an added static attribute, but doing so is less efficient.

Adding static attributes is more efficient than adding instance attributes, so adding
static attributes instead of adding instance attributes is strongly recommended.

Typically, a module adds an instance attribute and sets its value by calling
QTSS_SetValue (page 218) when it is first installed to add its default preferences to
its module preferences object. On subsequent runs of the server, the preferences will
already exist in the module’s module preferences object, so the module only needs
to call QTSS_GetValue (page 212), QTSS_GetValueAsString (page 213), or
QTSS_GetValuePtr (page 214) to get the value. Calling QTSS_GetValuePtr is the most
efficient and recommended way to get the value of an attribute. Calling
QTSS_GetValue is less efficient than calling QTSS_GetValuePtr, and calling
QTSS_GetValueAsString is less efficient than calling QTSS_GetValue.

Call QTSS_RemoveValue (page 217) to remove the value of an added attribute.

Unlike static attributes, instance attributes can be removed. To remove an instance
attribute from the instance of an object, call QTSS_RemoveInstanceAttribute
(page 216).

C H A P T E R 4

QuickTime Streaming Server Module Reference

207
  Apple Computer, Inc. August 29, 2003

QTSS_AddStaticAttribute

Adds a static attribute to an object type.

QTSS_Error QTSS_AddStaticAttribute(

QTSS_ObjectType inObjectType,

const char* inAttributeName,

void* inUnused,

QTSS_AttrDataType inAttrDataType);

Parameter Descriptions
inType

On input, a value of type QTSS_ObjectType (page 243) that specifies
the type of object to which the attribute is to be added.

inAttributeName

On input, a pointer to a byte array that specifies the name of the
attribute that is to be added.

inUnused

Always NULL.
QTSS_AttrDataType

On input, a value of type QTSS_AttrDataType (page 246) that specifies
the data type of the attribute that is being added.

result

A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddStaticAttribute is called from a role other than the Register
role, QTSS_BadArgument if the specified object type does not exist, the
attribute name is too long, or a parameter is not specified, and
QTSS_AttrNameExists if an attribute of the specified name already
exists.

Discussion
The QTSS_AddStaticAttribute callback routine adds the specified attribute to all
objects of the type specified by the inType parameter. This callback can only be
called from the Register role. Once added, static attributes cannot be removed while
the server is running.

When adding attributes to an object that a module as created, you must lock the
object first by calling QTSS_LockObject (page 203). Add the attributes and then call
QTSS_UnLockObject (page 204).

208
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Adding static attributes is more efficient than adding instance attributes, so adding
static attributes instead of instance attributes is strongly recommended.

The values of all added static attributes are implicitly readable, writable, and
preemptive safe. Call QTSS_SetValue (page 218) or QTSS_SetValuePtr (page 219) to
set the value of an added attribute.

Call QTSS_GetValuePtr (page 214), QTSS_GetValue (page 212) or
QTSS_GetValueAsString (page 213) to get the value of a static attribute that has been
added. Calling QTSS_GetValuePtr is the most efficient and recommended way to get
the value of an attribute. Calling QTSS_GetValue is less efficient than calling
QTSS_GetValuePtr, and calling QTSS_GetValueAsString is less efficient than calling
QTS_GetValue.

Call QTSS_RemoveValue (page 217) to remove the value of an added static attribute.

QTSS_GetAttrInfoByID

Uses an attribute ID to get information about an attribute.

QTSS_Error QTSS_GetAttrInfoByID(

QTSS_Object inObject,

QTSS_AttributeID inAttrID,

QTSS_AttrInfoObject* outAttrInfoObject);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object having the attribute for which information is to be obtained.

inAttrID

On input, a value of type QTSS_AttributeID (page 242) that specifies
the attribute for which information is to be obtained.

outAttrInfoObject

On output, a pointer to a value of type QTSS_AttrInfoObject that can
be used to get information about the attribute specified by inAttrID.

result

A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the
specified object does not exist, and QTSS_AttrDoesntExist if the
attribute doesn’t exist.

C H A P T E R 4

QuickTime Streaming Server Module Reference

209
  Apple Computer, Inc. August 29, 2003

Discussion
The QTSS_GetAttrInfoByID callback routine uses an attribute ID to get an
QTSS_AttrInfoObject that can be used to get the attribute’s name, its data type,
permissions for reading and writing the attribute’s value, and whether getting the
attribute’s value is preemptive safe.

QTSS_GetAttrInfoByIndex

Gets information about all of an object’s attributes by iteration.

QTSS_Error QTSS_GetAttrInfoByIndex(

QTSS_Object inObject,

UInt32 inIndex,

QTSS_AttrInfoObject* outAttrInfoObject);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object having the attribute for which information is to be obtained.

inIndex

On input, a value of type UInt32 that specifies the index of the
attribute for which information is to be obtained. Start by setting
inIndex to zero. For the next call to QTSS_GetAttrInfoByIndex,
increment inIndex by one to get information for the next attribute.
Call QTSS_GetNumAttributes (page 211) to get the number of
attributes that inObject has.

outAttrInfoObject

On output, a pointer to a value of type QTSS_AttrInfoObject that can
be used to get information about the attribute specified by
inAttrName.

result

A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the
specified object does not exist, and QTSS_AttrDoesntExist if the
attribute doesn’t exist.

210
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Discussion
The QTSS_GetAttrInfoByIndex callback routine uses an attribute ID to get an
QTSS_AttrInfoObject that can be used to get the attribute’s name and ID, its data
type and permissions for reading and write the attribute’s value.

The QTSS_GetAttrInfoByIndex callback routine returns a QTSS_AttrInfoObject for
both static and instance attributes.

QTSS_GetAttrInfoByName

Uses an attribute’s name to get information about an attribute.

QTSS_Error QTSS_GetAttrInfoByName(

QTSS_Object inObject,

char* inAttrName,

QTSS_AttrInfoObject* outAttrInfoObject);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object having the attribute for which information is to be obtained.

inAttrName

On input, a pointer to a C string containing the name of the attribute
for which information is to be obtained.

outAttrInfoObject

On output, a pointer to a value of type QTSS_AttrInfoObject that can
be used to get information about the attribute specified by
inAttrName.

result

A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the
specified object does not exist, and QTSS_AttrDoesntExist if the
attribute doesn’t exist.

Discussion
The QTSS_GetAttrInfoByName callback routine uses an attribute ID to get an
QTSS_AttrInfoObject that can be used to get the attribute’s ID, its data type, and
permissions for reading and writing the attribute’s value, and whether getting the
attribute’s value is preemptive safe.

C H A P T E R 4

QuickTime Streaming Server Module Reference

211
  Apple Computer, Inc. August 29, 2003

The QTSS_GetAttrInfoByName callback routine returns a QTSS_AttrInfoObject for
both static and instance attributes.

QTSS_GetNumAttributes

Gets a count of an object’s attributes.

QTSS_Error QTSS_GetNumAttributes(

QTSS_Object inObject,

UInt32* outNumAttributes);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object whose attributes are to be counted.

outNumAttributes

On output, a pointer to a value of type UInt32 that contains the count
of the object’s attributes.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if the specified object does not exist.

Discussion
The QTSS_GetNumAttributes callback routine gets the number of attributes for the
object specified by inObject. Having the number of attributes lets you know how
often to call QTSS_GetAttrInfoByIndex (page 209) when getting information about
each of an object’s attributes.

212
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

QTSS_GetValue

Copies the value of an attribute into a buffer.

QTSS_Error QTSS_GetValue (

QTSS_Object inObject,

QTSS_AttributeID inID,

UInt32 inIndex,

void* ioBuffer,

UInt32* ioLen);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object that contains the attribute whose value is to be obtained.

inID

On input, a value of type QTSS_AttributeID (page 242) that specifies
the ID of the attribute whose value is to be obtained.

inIndex

On input, a value of type UInt32 that specifies which attribute value
to get (if the attribute can have multiple values) or zero for
single-value attributes.

ioBuffer

On input, a pointer to a buffer. On output, ioBuffer contains the
value of the attribute specified by inID. If the buffer is too small to
contain the value, ioBuffer is empty.

ioLen

On input, a pointer to a value of type UInt32 that specifies the length
of ioBuffer. On output, ioLen contains the length of the valid data in
ioBuffer.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, QTSS_BadIndex of the index specified by
inIndex does not exist, QTSS_NotEnoughSpace if the attribute value is
longer than the value specified by ioLen, and QTSS_AttrDoesntExist
if the attribute doesn’t exist.

C H A P T E R 4

QuickTime Streaming Server Module Reference

213
  Apple Computer, Inc. August 29, 2003

Discussion
The QTSS_GetValue callback routine copies the value of the specified attribute into
the provided buffer.

Calling QTSS_GetValue is slower and less efficient than calling QTSS_GetValuePtr
(page 214).

QTSS_GetValueAsString

Gets the value of an attribute as a C string.

QTSS_Error QTSS_GetValueAsString (

QTSS_Object inObject,

QTSS_AttributeID inID,

UInt32 inIndex,

char** outString);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object that contains the attribute whose value is to be obtained.

inID

On input, a value of type QTSS_AttributeID (page 242) that specifies
the ID of the attribute whose value is to be obtained.

inIndex

On input, a value of type UInt32 that specifies which attribute value
to get (if the attribute can have multiple values) or zero for
single-value attributes.

outString

On input, a pointer to an address in memory. On output, outString
points to the value of the attribute specified by inID in string format.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, and QTSS_BadIndex of the index specified by
inIndex does not exist.

214
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Discussion
The QTSS_GetValueAsString callback routine gets the value of the specified attribute
converts it to C string format and stores it at the location in memory pointed to by
the outString parameter.

When you no longer need outString, call QTSS_Delete to free the memory that has
been allocated for it.

The QTSS_GetValueAsString callback routine can be called to get the value of
preemptive safe attributes as well as attributes that are not preemptive safe.
However, calling QTSS_GetValueAsString is less efficient than calling QTSS_GetValue
(page 212), and calling QTSS_GetValue is less efficient than calling QTSS_GetValuePtr
(page 214).

Calling QTSS_GetValue is the recommended way to get the value of an attribute that
is not preemptive safe and calling QTSS_GetValuePtr is the recommended way to get
the value of an attribute that is preemptive safe.

QTSS_GetValuePtr

Gets a pointer to an attribute’s value.

QTSS_Error QTSS_GetValuePtr (

QTSS_Object inObject,

QTSS_AttributeID inID,

UInt32 inIndex,

void** outBuffer,

UInt32* outLen);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object containing the attribute whose value is to be obtained.

inID

On input, a value of type QTSS_AttributeID (page 242) that specifies
the ID of an attribute.

C H A P T E R 4

QuickTime Streaming Server Module Reference

215
  Apple Computer, Inc. August 29, 2003

inIndex

On input, a value of type UInt32 that specifies which attribute value
to get (if the attribute can have multiple values) or zero for
single-value attributes.

outBuffer

On input, a pointer to an address in memory. On output, outBuffer
points to the value of the attribute specified by inID.

outLen

On output, a pointer to a value of type UInt32 that contains the
number of valid bytes pointed to by outBuffer.

result

A result code. Possible values include QTSS_NoErr,
QTSS_NotPreemptiveSafe if inID is an attribute that is not preemptive
safe, QTSS_BadArgument if a parameter is invalid, QTSS_BadIndex if the
index specified by inIndex does not exist, and QTSS_AttrDoesntExist
if the attribute doesn’t exist.

Discussion
The QTSS_GetValuePtr callback routine gets a pointer to an attribute’s value. Calling
QTSS_GetValuePtr is the fastest and most efficient way to get the value of an
attribute, and it is less likely to generate an error.

Before calling QTSS_GetValuePtr to get the value of an attribute that is not
preemptive safe, you must lock the object by calling QTSS_LockObject (page 203).
After getting the value, unlock the object by calling QTSS_UnLockObject (page 204).

If you don’t want to lock and unlock the object to get the value of an attribute that
is not preemptive safe, get the value by calling QTSS_GetValue (page 212) or
QTSS_GetValueAsString (page 213).

QTSS_IDForAttr

Gets the ID of a static attribute.

QTSS_Error QTSS_IDForAttr(

QTSS_ObjectType inType,

const char* inAttributeName,

QTSS_AttributeID* outID);

216
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Parameter Descriptions
inType

On input, a value of type QTSS_ObjectType (page 243) that specifies
the type of object for which the ID is to be obtained.

inAttributeName

On input, a pointer to a byte array that specifies the name of the
attribute whose ID is to be obtained.

outID

On input, a pointer to a value of type QTSS_AttributeID (page 242).
On output, outID contains the ID of the attribute specified by
inAttributeName.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if a parameter is invalid.

Discussion
The QTSS_IDForAttr callback routine obtains the attribute ID for the specified static
attribute in the specified object type. The attribute ID is used to when calling
QTSS_GetValue (page 212), QTSS_GetValueAsString (page 213), and QTSS_GetValuePtr
(page 214) get the attribute’s value.

To get the ID of an instance attribute, call QTSS_GetAttrInfoByName (page 210) or
QTSS_GetAttrInfoByIndex (page 209).

QTSS_RemoveInstanceAttribute

Remove an instance attribute from the instance of an object.

QTSS_Error QTSS_RemoveInstanceAttribute(

QTSS_Object inObject,

QTSS_AttributeID inID);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object from which the instance attribute is to be removed.

C H A P T E R 4

QuickTime Streaming Server Module Reference

217
  Apple Computer, Inc. August 29, 2003

inID

On input, a value of typeQTSS_AttributeID (page 242) that specifies
the ID of the attribute that is to be removed.

result

A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the
specified object instance does not exist, and QTSS_AttrDoesntExist if
the attribute doesn’t exist.

Discussion
The QTSS_RemoveInstanceAttribute callback routine removes the attribute specified
by the inID parameter from the instance of an object specified by the inObject
parameter.

The QTSS_RemoveInstanceAttribute callback can be called from any role.

QTSS_RemoveValue

Removes the specified value from an attribute.

QTSS_Error QTSS_RemoveValue (

QTSS_Object inObject,

QTSS_AttributeID inID,

UInt32 inIndex);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) having an attribute
whose value is to be removed.

inValueLen

On input, a value of type QTSS_AttributeID (page 242) containing the
attribute ID of the attribute whose value is to be removed.

inIndex

On input, a value of type UInt32 that specifies the attribute value that
is to be removed. Attribute value indexes are numbered starting
from zero.

218
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if InObject, inID, or inIndex do not contain valid values,
QTSS_ReadOnly if the attribute is read-only, and QTSS_BadIndex if the
specified index does not exist.

Discussion
The QTSS_RemoveValue callback routine removes the value of the specified attribute.
After the value is removed, the attribute values are renumbered.

QTSS_SetValue

Sets the value of an attribute.

QTSS_Error QTSS_SetValue (

QTSS_Object inObject,

QTSS_AttributeID inID,

UInt32 inIndex,

const void* inBuffer,

UInt32 inLen);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object containing the attribute whose value is to be set.

inID

On input, a value of type QTSS_AttributeID (page 242) that specifies
the ID of the attribute whose value is to be set.

inIndex

On input, a value of type UInt32 that specifies which attribute value
to set (if the attribute can have multiple values) or zero for
single-value attributes.

inBuffer

On input, a pointer to a buffer containing the value that is to be set.
When QTSS_SetValue returns, you can dispose of inBuffer.

inLen

On input, a pointer to a value of type UInt32 that specifies the length
of valid data in inBuffer.

C H A P T E R 4

QuickTime Streaming Server Module Reference

219
  Apple Computer, Inc. August 29, 2003

result

A result code. Possible values are QTSS_NoErr, QTSS_BadIndex if the
index specified by inIndex does not exist, QTSS_BadArgument if a
parameter is invalid, QTSS_ReadOnly if the attribute is read-only, and
QTSS_AttrDoesntExist if the attribute doesn’t exist.

Discussion
The QTSS_SetValue callback routine explicitly sets the value of the specified
attribute. Another way to set the value of an attribute is to call QTSS_SetValuePtr
(page 219).

QTSS_SetValuePtr

Sets an existing variable as the value of an attribute.

QTSS_Error QTSS_SetValue (

QTSS_Object inObject,

QTSS_AttributeID inID,

const void* inBuffer,

UInt32 inLen);

Parameter Descriptions
inObject

On input, a value of type QTSS_Object (page 242) that specifies the
object containing the attribute whose value is to be set.

inID

On input, a value of type QTSS_AttributeID (page 242) that specifies
the ID of the attribute whose value is to be set.

inBuffer

On input, a pointer to a buffer containing the value that is to be set.
inLen

On input, a pointer to a value of type UInt32 that specifies the length
of valid data in inBuffer.

result

A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if a
parameter is invalid, and QTSS_ReadOnly if the attribute is a read-only
attribute.

220
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Discussion
The QTSS_SetValuePtr callback routine allows modules to set an attribute that its
value is the value of a module’s variable. This callback is an alternative to the
QTSS_SetValue (page 218) callback.

After calling QTSS_SetValuePtr, the module must insure that the buffer pointed to
by inBuffer exists as long as the attribute specified by inID exists.

If the buffer pointed to by inBuffer is not updated atomically, updating the value of
inBuffer should be protected by calling QTSS_LockObject (page 203) before an
update.callback

QTSS_StringToValue

Converts an attribute data type in C string format to a value in QTSS_AttrDataType
format.

QTSS_Error QTSS_StringToValue(

const char* inValueAsString,

const QTSS_AttrDataType inType,

void* ioBuffer,

UInt32* ioBufSize);

Parameter Descriptions
inValueAsString

On input, a pointer to a character array containing the value that is
to be converted.

inType

On input, a value of type QTSS_AttrDataType (page 246) that specifies
the attribute data type to which the value pointed to by
inValueAsString is to be converted.

ioBuffer

On input, a pointer to a buffer. On output, the buffer contains the
attribute data type to which inValueAsString has been converted.
The calling module must allocate ioBuffer before calling
QTSS_StringToValue.

C H A P T E R 4

QuickTime Streaming Server Module Reference

221
  Apple Computer, Inc. August 29, 2003

ioBufSize

On input, a pointer to a value of type UInt32 that specifies the
length of the buffer pointed to by ioBuffer. On output, ioBufSize
points to the length of data in ioBuffer.

result

A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if
inValueAsString or inType do not contain valid values, and
QTSS_NotEnoughSpace if the buffer pointed to by ioBuffer is too small
to contain the converted value.

Discussion
The QTSS_StringToValue callback routine converts an attribute data type that is in C
string format to a value that is in QTSS_AttrDataType format.

When the memory allocated for the buffer pointed to by ioBuffer is no longer
needed, you should deallocate the memory.

QTSS_TypeStringToType

Gets the attribute data type of a data type string that is in C string format.

QTSS_Error QTSS_TypeStringToType(

const char* inTypeString,

QTSS_AttrDataType* outType);

Parameter Descriptions
inTypeString

On input, a pointer to a character array containing the attribute data
type in C string format.

outType

On output, a pointer to a value of type QTSS_AttrDataType (page 246)
containing the attribute data type.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if inTypeString does not contain a value for which an attribute data
type can be returned.

222
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Discussion
The QTSS_TypeStringToType callback routine gets the attribute data type of a data
type string that is in C string format.

QTSS_TypeToTypeString

Gets the name in C string format of an attribute data type.

QTSS_Error QTSS_TypeToTypeString(

const QTSS_AttrDataType inType,

char** outTypeString);

Parameter Descriptions
inType

On input, a pointer to a value of type QTSS_AttrDataType (page 246)
containing the attribute data type that is to be returned in C string
format.

outType

On input, a pointer to an address in memory. On output, outType
points to a C string containing the attribute data type.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if inType does not contain a valid attribute data type.

Discussion
The QTSS_TypeToTypeString callback routine gets the name in C string format of a
value that is in QTSS_AttrDataType format.

C H A P T E R 4

QuickTime Streaming Server Module Reference

223
  Apple Computer, Inc. August 29, 2003

QTSS_ValueToString

Converts an attribute data type in QTSS_AttrDataType format to a value in C string
format.

QTSS_Error QTSS_ValueToString(

const void* inValue,

const UInt32 inValueLen,

const QTSS_AttrDataType inType,

char** outString);

Parameter Descriptions
inValue

On input, a pointer to a buffer containing the value that is to be
converted from QTSS_AttrDataType format.

inValueLen

On input, a value of type UInt32 that specifies the length of the value
pointed to by inValue.

inType

On input, a value of type QTSS_AttrDataType (page 246) that specifies
the attribute data type of the value pointed by inValue.

outString

On output, a pointer to a location in memory containing the attribute
data type in C string format.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if inValue, inValueLen, or inType do not contain valid values.

Discussion
The QTSS_ValueToString callback routine converts an attribute data type in
QTSS_AttrDataType format to a value in C string format.

Stream Callback Routines
This section describes the callback routines that modules call to perform I/O on
streams. Internally, the server performs I/O asynchronously, so QTSS stream
callback routines do not block and, unless otherwise noted, return the error
QTSS_WouldBlock if data cannot be written. The stream callback routines are:

224
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

� “QTSS_Advise” (page 224)

� “QTSS_Read” (page 225)

� “QTSS_Seek” (page 225)

� “QTSS_RequestEvent” (page 226)

� “QTSS_SignalStream” (page 227)

� “QTSS_Write” (page 228)

� “QTSS_WriteV” (page 229)

� “QTSS_Flush” (page 230)

QTSS_Advise

Advises that the specified section of the stream will soon be read.

QTSS_Error QTSS_Advise(QTSS_StreamRef inRef,

UInt64 inPosition,

UInt32 inAdviseSize);

Parameter Descriptions
inRef

On input, a value of type QTSS_StreamRef (page 244) obtained by
calling QTSS_OpenFileObject (page 231) that specifies the stream.

inPosition

On input, the offset in bytes from the beginning of the stream that
marks the beginning of the advise section.

inAdviseSize

On input, the size in bytes of the advise section.
result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, and QTSS_RequestFailed.

Discussion
The QTSS_Advise callback routine tells a file system module that the specified section
of a stream will be read soon. The file system module may read ahead in order to
respond more quickly to future calls to QTSS_Read for the specified stream.

C H A P T E R 4

QuickTime Streaming Server Module Reference

225
  Apple Computer, Inc. August 29, 2003

QTSS_Read

Reads data from a stream.

QTSS_Error QTSS_Read(QTSS_StreamRef inRef,

void* ioBuffer,

UInt32 inBufLen,

UInt32* outLengthRead);

Parameter Descriptions
inRef

On input, a value of type QTSS_StreamRef (page 244) that specifies the
stream from which data is to be read. Call QTSS_OpenFileObject to
obtain a stream reference for the file you want to read.

ioBuffer

On input, a pointer to a buffer in which data that is read is to be
placed.

inBufLen

On input, a value of type UInt32 that specifies the length of the buffer
pointed to by ioBuffer.

outLenRead

On output, a pointer to a value of type UInt32 that contains the
number of bytes that were read.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, QTSS_WouldBlock if the read operation would
block, or QTSS_RequestFailed if the read operation failed.

Discussion
The QTSS_Read callback routine reads a buffer of data from a stream.

QTSS_Seek

Sets the position of a stream.

QTSS_Error QTSS_Seek(QTSS_StreamRef inRef,

UInt64 inNewPosition);

226
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Parameter Descriptions
inRef

On input, a value of type QTSS_StreamRef (page 244) QTSS_StreamRef
that specifies the stream whose position is to be set. Call
QTSS_OpenFileObject to obtain stream reference.

inNewPosition

On input, the offset in bytes from the start of the stream to which the
position is to be set.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, and QTSS_RequestFailed if the seek
operation failed.

Discussion
The QTSS_Seek callback routine sets the stream position to the value specified by
inNewPosition.

QTSS_RequestEvent

Requests notification of specified events.

QTSS_Error QTSS_RequestEvent(QTSS_StreamRef inStream,

QTSS_EventType inEventMask);

Parameter Descriptions
inStream

On input, a value of type QTSS_StreamRef (page 244) that specifies the
stream for which event notifications are requested.

inEventMask

On input, a value of type QTSS_EventType (page 250) specifying a
mask that represents the events for which notifications are
requested.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, and QTSS_RequestFailed if the call failed.

C H A P T E R 4

QuickTime Streaming Server Module Reference

227
  Apple Computer, Inc. August 29, 2003

Discussion
The QTSS_RequestEvent callback requests that the caller be notified when the
specified events occur on the specified stream. After calling QTSS_RequestEvent, the
calling module should return as soon as possible from its current module role. The
server preserves the calling module’s current state and, when the event occurs, calls
the module in the role the module was in when it called QTSS_RequestEvent.

QTSS_SignalStream

Notifies the recipient of events that a stream has become available for I/O.

QTSS_Error QTSS_RequestEvent(QTSS_StreamRef inStream,

QTSS_EventType inEventMask);

Parameter Descriptions
inStream

On input, a value of type QTSS_StreamRef (page 244) specifying the
stream that has become available for I/O.

inEventMask

On input, a value of type QTSS_EventType (page 250) containing a
mask that represents whether the stream has become available for
reading, writing, or both.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, QTSS_OutOfState if this callback is made
from a role that does not allow asynchronous events, and
QTSS_RequestFailed if the call failed.

Discussion
The QTSS_SignalStream callback routine tells the server that the stream represented
by inStream has become available for I/O. Currently only file system modules have
reason to call QTSS_SignalStream.

228
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

QTSS_Write

Writes data to a stream.

QTSS_Error QTSS_Write(

QTSS_StreamRef inRef,

void* inBuffer,

UInt32 inLen,

UInt32* outLenWritten,

UInt32 inFlags);

Parameter Descriptions
inRef

On input, a value of type QTSS_StreamRef (page 244) that specifies the
stream to which data is to be written.

inBuffer

On input, a pointer to a buffer containing the data that is to be
written.

inLen

On input, a value of type UInt32 that specifies the length of the data
in the buffer pointed to by ioBuffer.

outLenWritten

On output, a pointer to a value of type UInt32 that contains the
number of bytes that were written.

inFlags

On input, a value of type UInt32. See the Discussion section for
possible values.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, QTSS_NotConnected if the stream receiver is
no longer connected, and QTSS_WouldBlock if the stream cannot be
completely flushed at this time.

Discussion
The QTSS_Write callback routine writes a buffer of data to a stream.

The following enumeration defines constants for the inFlags parameter:

C H A P T E R 4

QuickTime Streaming Server Module Reference

229
  Apple Computer, Inc. August 29, 2003

enum

{

qtssWriteFlagsIsRTP = 0x00000001,

qtssWriteFlagsIsRTCP= 0x00000002

};

These flags are relevant when writing to an RTP stream reference and tell the server
whether the data written should be sent over the RTP channel
(qtssWriteFlagsIsRTP) or over the RTCP channel of the specified RTP stream
(qtssWriteFlagsIsRTCP).

QTSS_WriteV

Writes data to a stream using an iovec structure.

QTSS_Error QTSS_WriteV(

QTSS_StreamRef inRef,

iovec* inVec,

UInt32 inNumVectors,

UInt32 inTotalLength,

UInt32* outLenWritten);

Parameter Descriptions
inRef

On input, a value of type QTSS_StreamRef (page 244) that specifies the
stream to which data is to be written.

inVec

On input, a pointer to an iovec structure. The first member of the
iovec structure must be empty.

inNumVectors

On input, a value of type UInt32 that specifies the number of vectors.
inTotalLength

On input, a value of type UInt32 specifying the total length of inVec.
outLenWritten

On output, a pointer to a value of type UInt32 containing the number
of bytes that were written.

230
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is NULL, and QTSS_WouldBlock if the write operation
would block.

Discussion
The QTSS_WriteV callback routine writes a data to a stream using an iovec structure
in a way that is similar to the POSIX writev call.

QTSS_Flush

Forces an immediate write operation.

QTSS_Error QTSS_Flush(QTSS_StreamRef inRef);

Parameter Descriptions
inRef

On input, a value of type QTSS_StreamRef (page 244) that specifies the
stream for which buffered data is to be written.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is NULL, and QTSS_WouldBlock if the stream cannot be
flushed completely at this time.

Discussion
The QTSS_Flush callback routine forces the stream to immediately write any data
that has been buffered. Some QTSS stream references, such as QTSSRequestRef,
buffer data before sending it.

File System Callback Routines
Modules use the callback routines described in this section to open and close a file
object.

� “QTSS_OpenFileObject” (page 231)

� “QTSS_CloseFileObject” (page 231)

C H A P T E R 4

QuickTime Streaming Server Module Reference

231
  Apple Computer, Inc. August 29, 2003

QTSS_OpenFileObject

Opens a file.

QTSS_Error QTSS_OpenFileObject(

char* inPath,

QTSS_OpenFileFlags inFlags,

QTSS_Object* outFileObject);

Parameter Descriptions
inPath

On input, a pointer to a null-terminated C string containing the full
path to the file in the local file system that is to be opened.

inFlags

On input, a value of type QTSS_OpenFileFlags (page 250) specifying
flags that describe how the file is to be opened.

outFileObject

On output, a pointer to a value of type QTSS_Object (page 242) in
which the file object for the opened file is to be placed.

result

A result code. Possible values include QTSS_NoErr, QTSS_BadArgument
if a parameter is invalid, and QTSS_FileNotFound if the specified file
does not exist.

Discussion
The QTSS_OpenFileObject callback routine opens the specified file and returns a file
object for it. One of the attributes of the file object is a stream reference that is passed
to QTSS stream callback routines to read and write data to the file and to perform
other file operations.

QTSS_CloseFileObject

Closes a file.

QTSS_Error QTSS_CloseFileObject(QTSS_Object inFileObject);

232
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Parameter Descriptions
inFileObject

On input, a value of type QTSS_Object (page 242) that represents the
file that is to be closed.

result

A result code. Possible values include QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_CloseFileObject callback routine closes the specified file.

Service Callback Routines
Modules use the callback routines described in this section to register and invoke
services. The service callback routines are:

� QTSS_AddService (page 232)

� QTSS_IDForService (page 233)

� QTSS_DoService (page 234)

QTSS_AddService

Adds a service.

QTSS_Error QTSS_AddService(

const char* inServiceName,

QTSS_ServiceFunctionPtr inFunctionPtr);

Parameter Descriptions
inServiceName

On input, a pointer to a string containing the name of the service that
is being added.

inFunctionPtr

On input, a pointer to the module that provides the service that is
being added.

C H A P T E R 4

QuickTime Streaming Server Module Reference

233
  Apple Computer, Inc. August 29, 2003

result

A result code. Possible values include QTSS_NoErr, QTSS_OutOfState if
QTSS_AddService is not called from the Register role, and
QTSS_BadArgument if inServiceName is too long or if a parameter is
NULL.

Discussion
The QTSS_AddService callback routine makes the specified service available for other
modules to call.

This callback can only be called from the Register role.

QTSS_IDForService

Resolves a service name to a service ID.

QTSS_Error QTSS_IDForService(

const char* inTag,

QTSS_ServiceID* outID);

Parameter Descriptions
inTag

On input, a pointer to a string containing the name of the service that
is to be resolved.

outID

On input, a pointer to a value of type QTSS_ServiceID (page 244). On
output, QTSS_ServiceID contains the ID of the service specified by
inTag.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if a parameter is invalid.

Discussion
The QTSS_IDForService callback routine returns in the outID parameter the service
ID of the service specified by the inTag parameter. You can use the service ID to call
QTSS_DoService (page 234) to invoke the service that serviceID represents.

234
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

QTSS_DoService

Invokes a service.

QTSS_Error QTSS_DoService(

QTSS_ServiceID inID,

QTSS_ServiceFunctionArgsPtr inArgs);

Parameter Descriptions
inID

On input, a value of type QTSS_ServiceID (page 244) that specifies the
service that is to be invoked. Call QTSS_IDForAttr (page 215) to get
the service ID of the service you want to invoke.

inArgs

On input, a value of type QTSS_ServiceFunctionArgsPtr that points to
the arguments that are to be passed to the service.

result

A result code returned by the service or QTSS_IllegalService if inID
is invalid.

Discussion
The QTSS_DoService callback routine invokes the service specified by inID.

RTSP Header Callback Routines
As a convenience to modules that want to send RTSP responses, the server provides
the utilities described in this section for formatting RTSP responses properly. The
RTSP header callback routines are:

� QTSS_AppendRTSPHeader (page 235)

� QTSS_SendRTSPHeaders (page 235)

� QTSS_SendStandardRTSPResponse (page 236)

C H A P T E R 4

QuickTime Streaming Server Module Reference

235
  Apple Computer, Inc. August 29, 2003

QTSS_AppendRTSPHeader

Appends information to an RTSP header.

QTSS_Error QTSS_AppendRTSPHeader(

QTSS_RTSPRequestObject inRef,

QTSS_RTSPHeader inHeader,

const char* inValue,

UInt32 inValueLen);

Parameter Descriptions
inRef

On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

inHeader

On input, a value of type QTSS_RTSPHeader.
inValue

On input, a pointer to a byte array containing the header that is to be
appended.

inValueLen

On input, a value of type UInt32 containing the length of valid data
pointed to by inValue.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if a parameter is invalid.

Discussion
The QTSS_AppendRTSPHeader callback routine appends headers to an RTSP header.
After calling QTSS_AppendRTSPHeader, call QTSS_SendRTSPHeaders (page 235) to send
the entire header.

QTSS_SendRTSPHeaders

Sends an RTSP header.

QTSS_Error QTSS_SendRTSPHeaders(

QTSS_RTSPRequestOjbect inRef);

236
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Parameter Descriptions
inRef

On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if a parameter is invalid.

Discussion
The QTSS_SendRTSPHeaders callback routine sends an RTSP header. When a module
calls QTSS_SendRTSPHeaders, the server sends a proper RTSP status line, using the
request’s current status code. The server also sends the proper CSeq header, session
ID header, and connection header.

QTSS_SendStandardRTSPResponse

Sends an RTSP response to a client.

QTSS_Error QTSS_SendStandardRTSPResponse(

QTSS_RTSPRequestObject inRTSPRequest,

QTSS_Object inRTPInfo,

UInt32 inFlags);

Parameter Descriptions
inRTSPRequest

On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

inRTPInfo

On input, a value of type QTSS_Object (page 242). This parameter is a
QTSS_ClientSessionObject or a QTSS_RTPStreamObject, depending the
response that is sent.

inFlags

On input, a value of type UInt32. Set inFlags to
qtssPlayRespWriteTrackInfo if you want the server to append the
seq number, a timestamp, and SSRC information to RTP-Info
headers.

C H A P T E R 4

QuickTime Streaming Server Module Reference

237
  Apple Computer, Inc. August 29, 2003

result

A result code. Possible values include QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_SendStandardRTSPResponse callback routine writes a standard response to
the stream specified by the inRTSPRequest parameter. The actual response that is
sent depends on the method.

The following enumeration defines the qtssPlayRespWriteTrackInfo constant for
the inFlags parameter:

enum

{

qtssPlayRespWriteTrackInfo = 0x00000001

};

This function supports the following response methods:

� DESCRIBE. This response method writes status line, CSeq, SessionID,
Connection headers as determined by the request. Writes a Content-Base header
with the content base being the URL provided. Writes a Content-Type header of
application/sdp. The inRTPInfo parameter must be a QTSS_ClientSessionObject.

� ANNOUNCE. This response method writes status line, CSeq, and Connection
headers as determined by the request. The inRTPInfo parameter must be a
QTSS_ClientSessionObject.

� SETUP. This response method writes status line, CSeq, SessionID, Connection
headers as determined by the request. Writes a Transport header with client and
server ports (if the connection is over UDP). The inRTPInfo parameter must be a
QTSS_RTPStreamObject.

� PLAY. This response method writes status line, CSeq, SessionID, Connection
headers as determined by the request. The inRTPInfo parameter must be a
QTSS_ClientSessionObject. Set the inFlags parameter to
qtssPlayRespWriteTrackInfo to specify that you want the server to append the
sequence number, timestamp, and SSRC information to the RTP-Info header.

� PAUSE. This response method writes status line, CSeq, SessionID, Connection
headers as determined by the request. The inRTPInfo parameter must be a
QTSS_ClientSessionObject.

238
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

� TEARDOWN. This response method writes status line, CSeq, SessionID,
Connection headers as determined by the request. The inRTPInfo parameter
must be a QTSS_ClientSessionObject.

RTP Callback Routines
QTSS modules can generate and send RTP packets in response to an RTSP request.
Typically RTP packets are sent in response to a SETUP request from the client.
Currently, only one module can generate packets for a particular session. The RTP
callback routines are:

� QTSS_AddRTPStream (page 238)

� QTSS_Play (page 239)

� QTSS_Pause (page 240)

� QTSS_Teardown (page 241)

QTSS_AddRTPStream

Enables a module to send RTP packets to a client.

QTSS_Error QTSS_AddRTPStream(

QTSS_ClientSessionObject inClientSession,

QTSS_RTSPRequestObject inRTSPRequest,

QTSS_RTPStreamObject* outStream,

QTSS_AddStreamFlags inFlags);

Parameter Descriptions
inClientRequest

On input, a value of type QTSS_ClientSessionObject identifying the
client session for which the sending of RTP packets is to be enabled.

inRTSPRequest

On input, a value of type QTSS_RTSPRequestObject.
outStream

On output, a pointer to a value of type QTSS_RTPStreamObject,
containing the newly created stream.

C H A P T E R 4

QuickTime Streaming Server Module Reference

239
  Apple Computer, Inc. August 29, 2003

inFlags

On input, a value of type QTSS_AddStreamFlags (page 248) that
specifies stream options.

result

A result code. Possible values are QTSS_NoErr, QTSS_RequestFailed if
the QTSS_RTPStreamObject couldn’t be created, and
QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_AddRTSPStream callback routine enables a module to send RTP packets to
a client in response to an RTSP request. Call QTSS_AddRTSPStream multiple times in
order to add more than one stream to the session.

To start playing a stream, call QTSS_Play (page 239).

QTSS_Play

Starts playing streams associated with a client session.

QTSS_Error QTSS_Play(

QTSS_ClientSessionObject inClientSession,

QTSS_RTSPRequestObject inRTSPRequest,

QTSS_PlayFlags inPlayFlags);

Parameter Descriptions
inClientSession

On input, a value of type QTSS_ClientSessionObject that identifies
the client session for which the sending of RTP packets was enabled
by previously calling QTSS_AddRTPStream (page 238).

inRTSPRequest

On input, a value of type QTSS_RequestObject.
inPlayFlags

On input, a value of type QTSS_PlayFlags. Set inPlayFlags to the
constant qtssPlaySendRTCP to cause the server to generate RTCP
sender reports automatically while playing. Otherwise, the module
is responsible for generating sender reports that specify play
characteristics.

240
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if a parameter is invalid, and QTSS_RequestFailed if no streams have
been added to the session.

Discussion
The QTSS_Play callback routine starts playing streams associated with the specified
client session.

The module that called QTSS_AddRTPStream (page 238) is the only module that can
call QTSS_Play.

Before calling QTSS_Play, the module should set the following attributes of the
QTSS_RTPStreamObject object for this RTP stream:

� qtssRTPStrFirstSeqNumber, which should be set to the sequence number of the
first packet after the last PLAY request was issued. The server uses the sequence
number to generate a proper RTSP PLAY response.

� qtssRTPStrFirstTimestamp, which should be set to the timestamp of the first RTP
packet generated for this stream after the last PLAY request was issued. The
server uses the timestamp to generate a proper RTSP PLAY response.

� qtssRTPStrTimescale, which should be set to the timescale for the track.

 After calling QTSS_Play, the module is invoked in the RTP Send Packets role.

Call QTSS_Pause (page 240) to pause playing or call QTSS_Teardown (page 241) to close
the client session.

QTSS_Pause

Pauses a stream that is playing.

QTSS_Error QTSS_Pause(QTSS_ClientSessionObject inClientSession);

Parameter Descriptions
inClientSession

On input, a value of type QTSS_ClientSessionObject that identifies
the client session that is to be paused.

C H A P T E R 4

QuickTime Streaming Server Module Reference

241
  Apple Computer, Inc. August 29, 2003

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if a parameter is invalid.

Discussion
The QTSS_Pause callback routine pauses playing for a stream. The module that
called QTSS_AddRTPStream (page 238) is the only module that can call QTSS_Pause.

QTSS_Teardown

Closes a client session.

QTSS_Error QTSS_Teardown(QTSS_ClientSessionObject inClientSession);

Parameter Descriptions
inClientSession

On input, a value of type QTSS_ClientSessionObject that identifies
the client session that is to be closed.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument
if a parameter is invalid.

Discussion
The QTSS_Teardown callback routine closes a client session.

The module that called QTSS_AddRTPStream (page 238) is the only module that can
call QTSS_Teardown.

Calling QTSS_Teardown causes the calling module to be invoked in the Client Session
Closing role for the session identified by the inClientSession parameter.

QTSS Data Types

� QTSS_AttributeID (page 242) uniquely identifies an attribute

� QTSS_Object (page 242) used to define QTSS objects

242
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

� QTSS_ObjectType (page 243) identifies a QTSS object type

� QTSS_Role (page 244) usedto store module roles

� QTSS_ServiceID (page 244) identifies a service

� QTSS_StreamRef (page 244) identifes a stream

� QTSS_TimeVal (page 245) used to store time values

QTSS_AttributeID

A QTSS_AttributeID is a signed 32-bit integer that uniquely identifies an attribute.

typedef SInt32 QTSS_AttributeID;

QTSS_Object

A QTSS_Object is a pointer to a value that identifies a particular object. The
QTSS_Object is defined as

typedef void* QTSS_Object;

Discussion
The QTSS_Object is used to define other QTSS objects:

typedef QTSS_Object QTSS_RTPStreamObject;

typedef QTSS_Object QTSS_RTSPSessionObject;

typedef QTSS_Object QTSS_RTSPRequestObject;

typedef QTSS_Object QTSS_RTSPHeaderObject;

typedef QTSS_Object QTSS_ClientSessionObject;

typedef QTSS_Object QTSS_ConnectedUserObject;

typedef QTSS_Object QTSS_ServerObject;

typedef QTSS_Object QTSS_PrefsObject;

typedef QTSS_Object QTSS_TextMessagesObject;

typedef QTSS_Object QTSS_FileObject;

typedef QTSS_Object QTSS_ModuleObject;

typedef QTSS_Object QTSS_ModulePrefsObject;

typedef QTSS_Object QTSS_AttrInfoObject;

typedef QTSS_Object QTSS_UserProfileObject;

C H A P T E R 4

QuickTime Streaming Server Module Reference

243
  Apple Computer, Inc. August 29, 2003

QTSS_ObjectType

A QTSS_ObjectType is a value of type UInt32 that identifies a particular QTSS object
type.

typedef UInt32 QTSS_ObjectType;

Discussion
Constants for the following QTSS object types are defined:

� qtssAttrInfoObjectType — The attribute information object type. Objects of this
type have attributes that describe an attribute.

� qtssClientSessionObjectType — The client session object type. Objects of this
type have attributes that describe a client session.

� qtssConnectedUserObjectType — The connected user object type. Objects of this
type have attributes that described connections other than those described by
qtssClientSessionObjectType objects.

� qtssFileObjectType — The file object type. Objects of this type have attributes
that describe an open file.

� qtssModuleObjectType — The module object type. Objects of this type have
attributes that describe a QTSS module.

� qtssModulePrefsObjectType — The module preferences object type. Objects of
this type have attributes that describe module preferences.

� qtssPrefsObjectType — The preferences object type. Objects of this type have
attributes that describe the server’s preferences.

� qtssRTPStreamObjectType — The RTPS stream object type. Objects of this type
have attributes that describe an RTP stream.

� qtssRTSPHeaderObjectType — The RTSP header object type. Objects of this
type have attributes that contain all of the RTSP headers associated with an
individual RTSP request.

� qtssRTSPRequestObjectType — The RTSP request object type. Objects of this
type have attributes that describe a particular RTSP request.

� qtssRTSPSessionObjectType — The RTSP session object type. Objects of this
type have attributes that describe an RTSP client-server connection.

� qtssServerObjectType — The server object type. Objects of this type have
attributes that contain global server information, such as server statistics.

244
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

� qtssTextMessagesObjectType — The text messages object type. Objects of this
type have attributes that contain messages intended for display to the user.

� qtssUserProfileObjectType — The user profile object type. Objects of this type
have attributes that contain information about a user, such as name, password,
the groups the user is a member of, and the user’s authentication realm.

QTSS_Role

A value of type QTSS_Role is an unsigned 32-bit integer used to store module roles.
It is defined as

typedef UInt32 QTSS_Role;

QTSS_ServiceID

A QTSS_ServiceID is a signed 32-bit integer that uniquely identifies a service. It is
defined as

typedef SInt32 QTSS_ServiceID;

QTSS_StreamRef

A value of type QTSS_StreamRef is a pointer to a value that identifies a particular
stream. It is defined as

typedef void* QTSS_StreamRef;

Discussion
The QTSS_StreamRef is used to define other stream references:

typedef QTSS_StreamRef QTSS_ErrorLogStream;

typedef QTSS_StreamRef QTSS_FileStream;

typedef QTSS_StreamRef QTSS_RTSPSessionStream;

typedef QTSS_StreamRef QTSS_RTSPRequestStream;

typedef QTSS_StreamRef QTSS_RTPStreamStream;

typedef QTSS_StreamRef QTSS_SocketStr

C H A P T E R 4

QuickTime Streaming Server Module Reference

245
  Apple Computer, Inc. August 29, 2003

QTSS_TimeVal

A value of type QTSS_TimeVal is a signed 64-bit integer used to store time values. It
is defined as

typedef SInt64 QTSS_TimeVal;

QTSS Constants

� QTSS_AttrDataType (page 246) — an enumeration that defines values for
attribute data types

� QTSS_AttrPermission (page 248) — an enumeration that defines values used to
indicate whether an attribute is readable, writable, or preemptive safe

� QTSS_AddStreamFlags (page 248) — an enumeration that defines flags for
specifying stream options when adding RTP streams

� QTSS_CliSesTeardownReason (page 249) — an enumeration that defines values
describing why a session is closing

� QTSS_EventType (page 250) — an enumeration that defines values describing
stream I/O events

� QTSS_OpenFileFlags (page 250) — an enumeration that defines values that
describe how a file is to be opened

� QTSS_RTPPayloadType (page 251) — an enumeration that defines values that a
module uses to specify the stream’s payload type when it adds an RTP stream
to a client session

� QTSS_RTPNetworkMode (page 252) — an enumberation that defines values that
describe the RTP network mode

� QTSS_RTPSessionState (page 252) — an enumeration that defines values that
describe the state of an RTP session

� QTSS_RTPTransportType (page 253) — an enumeration that defines values for
specifying RTP transports

� QTSS_RTSPSessionType (page 253) — an enumeration that defines values for
specifying RTSP session types

246
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

� QTSS_ServerState (page 254) — an enumeration that defines values for
identifying the server’s state

QTSS_AttrDataType

Each QTSS attribute has an associated data type. The QTSS_AttrDataType
enumeration defines values for attribute data types. Having an attribute’s data type
helps the server and modules handle an attribute value without having specific
knowledge about the attribute.

typedef UInt32 QTSS_AttrDataType;

enum

{

qtssAttrDataTypeUnknown = 0,

qtssAttrDataTypeCharArray = 1,

qtssAttrDataTypeBool16 = 2,

qtssAttrDataTypeSInt16 = 3,

qtssAttrDataTypeUInt16 = 4,

qtssAttrDataTypeSInt32 = 5,

qtssAttrDataTypeUInt32 = 6,

qtssAttrDataTypeSInt64 = 7,

qtssAttrDataTypeUInt64 = 8,

qtssAttrDataTypeQTSS_Object = 9,

qtssAttrDataTypeQTSS_StreamRef= 10,

qtssAttrDataTypeFloat32 = 11,

qtssAttrDataTypeFloat64 = 12,

qtssAttrDataTypeVoidPointer = 13,

qtssAttrDataTypeTimeVal = 14,

qtssAttrDataTypeNumTypes = 15

};

Constant Descriptions
qtssAttrDataTypeUnknown

The data type is unknown.
qtssAttrDataTypeCharArray

The data type is a character array.
qtssAttrDataTypeBool16

The data type is a 16-bit Boolean value.

C H A P T E R 4

QuickTime Streaming Server Module Reference

247
  Apple Computer, Inc. August 29, 2003

qtssAttrDataTypeSInt16

The data type is a signed 16-bit integer.
qtssAttrDataTypeUInt16

The data type is an unsigned 16-bit integer.
qtssAttrDataTypeSInt32

The data type is a signed 32-bit integer.
qtssAttrDataTypeUInt32

The data type is an unsigned 32-bit integer.
qtssAttrDataTypeSInt64

The data type is a signed 64-bit integer.
qtssAttrDataTypeQTSS_Object

The data type is a QTSS_Object (page 242).
qtssAttrDataTypeQTSS_StreamRef

The data type is a QTSS_ServerState (page 254).
qtssAttrDataTypeFloat32

The data type is a Float32.
qtssAttrDataTypeFloat64

The data type is a Float64.
qtssAttrDataTypeVoidPointer

The data type is a pointer to a void.
qtssAttrDataTypeTimeVal

The data type is a QTSS_TimeVal (page 245).
qtssAttrDataTypeNumTypes

The data type is a value that describes the number of types.

248
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

QTSS_AttrPermission

The QTSS_AttrPermission data type is an enumeration that defines values used to
indicate whether an attribute is readable, writable, or preemptive safe. The data
type of the qtssAttrPermissions attribute of the QTSS_AttrInfoObject object type is
of type QTSS_AttrPermission.

typedef UInt32 QTSS_AttrPermission;

enum

{

qtssAttrModeRead = 1,

qtssAttrModeWrite = 2,

qtssAttrModePreempSafe= 4

};

Constant Descriptions
qtssAttrModeRead

The attribute is readable.
qtssAttrModeWrite

The attribute is writable.
qtssAttrModePrempSafe

The attribute is preemptive safe.

Discussion
Once set, attribute permissions cannot be changed.

QTSS_AddStreamFlags

The QTSS_AddStreamFlags enumeration defines flags that specify stream options
when adding RTP streams.

enum

{

qtssASFlagsAllowDestination = 0x00000001,

qtssASFlagsForceInterleave = 0x00000002

};

typedef UInt32 QTSS_AddStreamFlags;

C H A P T E R 4

QuickTime Streaming Server Module Reference

249
  Apple Computer, Inc. August 29, 2003

Constant Descriptions
qtssASFlagsAllowDestination

qtssASFlagsForceInterleave

Requires interleaving.

QTSS_CliSesTeardownReason

The QTSS_CliSesTeardownReason enumeration defines values that describe why a
session is closing. The QTSS_RTPSessionState enumeration is defined as

enum

{

qtssCliSesTearDownClientRequest = 0,

qtssCliSesTearDownUnsupportedMedia = 1,

qtssCliSesTearDownServerShutdown = 2,

qtssCliSesTearDownServerInternalErr = 3

};

typedef UInt32 QTSS_CliSesTeardownReason;

Constant Descriptions
qtssCliSesTearDownClientRequest

The client requested that the session be closed.
qtssCliSesTearDownUnsupportedMedia

The session is being closed because the media is not supported.
qtssCliSesTearDownServerShutdown

The server requested that the session be closed.
qtssCliSesTearDownServerInternalErr

The session is being closed because of a server error.

250
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

QTSS_EventType

A QTSS_EventType is an unsigned 32-bit integer whose value uniquely identifies
stream I/O events.

enum

{

QTSS_ReadableEvent = 1,

QTSS_WriteableEvent = 2

};

typedef UInt32 QTSS_EventType;

Constant Descriptions
QTSS_ReadableEvent

The stream has become readable.
QTSS_WriteableEvent

The stream has become writable.

QTSS_OpenFileFlags

A QTSS_OpenFileFlags is an unsigned 32-bit integer whose value describes how a file
is to be opened.

enum

{

qtssOpenFileNoFlags = 0,

qtssOpenFileAsync = 1,

qtssOpenFileReadAhead= 2

};

typedef UInt32 QTSS_OpenFileFlags;

Constant Descriptions
qtssOpenFileNoFlags

No open flags are specified.
qtssOpenFileAsync

The file stream will be read asynchronously. Reads may return
QTSS_WouldBlock. Modules that open files with qtssOpenFileAsync
should call QTSS_RequestEvent (page 226) to be notified when data is
available for reading.

C H A P T E R 4

QuickTime Streaming Server Module Reference

251
  Apple Computer, Inc. August 29, 2003

qtssOpenReadAhead

The file stream will be read in order from beginning to end. The file
system module may read ahead in order to respond more quickly to
future read calls.

QTSS_RTPPayloadType

The QTSS_RTPPayloadType enumeration defines values that a module uses to specify
the stream’s payload type when it adds an RTP stream to a client session. The
enumeration is defined as

enum

{

qtssUnknownPayloadType = 0,

qtssVideoPayloadType = 1,

qtssAudioPayloadType = 2

};

typedef UInt32 QTSS_RTPPayloadType;

Constant Descriptions
qtssUnknownPayloadType

The payload type is unknown.
qtssVideoPayloadType

The payload type is video.
qtssAudioPayloadType

The payload type is audio.

252
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

QTSS_RTPNetworkMode

The QTSS_RTPNetworkMode enumeration defines values that describe the RTP
network mode. These values are set as the value of the qtssRTPStrNetworkMode and
qtssRTSPReqNetworkMode attributes of objects of type qtssRTPStreamObjectType and
qtssRTSPRequestObjectType, respectively. The QTSS_RTPNetworkMode enumeration is
defined as

enum

{

qtssRTPNetworkModeDefault = 0,

qtssRTPNetworkModeMulticast = 1,

qtssRTPNetworkModeUnicast= 2

};

typedef UInt32 QTSS_RTPNetworkModes;

Constant Descriptions
qtssRTPNetworkModeDefault

The RTP network mode is not declared.
qtssRTPNetworkModeMulticast

The RTP network mode is multicast.
qtssRTPNetworkModeUnicast

The RTP network mode is unicast.

QTSS_RTPSessionState

The QTSS_RTPSessionState enumeration defines values that identify the state of an
RTP session. The QTSS_RTPSessionState enumeration is defined as

enum

{

qtssPausedState = 0,

qtssPlayingState = 1

};

typedef UInt32 QTSS_RTPSessionState;

Constant Descriptions
qtssPausedState

The RTP session is paused.

C H A P T E R 4

QuickTime Streaming Server Module Reference

253
  Apple Computer, Inc. August 29, 2003

qtssPlayingState

The RTP session is playing.

QTSS_RTPTransportType

The QTSS_RTPTransportType enumeration defines values for RTP transports. The
enumeration is defined as

enum

{

qtssRTPTransportTypeUDP = 0,

qtssRTPTransportTypeReliableUDP= 1,

qtssRTPTransportTypeTCP = 2

};

typedef UInt32 QTSS_RTPTransportType;

Constant Descriptions
qtssRTPTransportTypeUDP

The RTP transport type is UDP.
qtssRTPTransportTypeReliableUDP

The RTP transport type is Reliable UDP.
qtssRTPTransportTypeTCP

The RTP transport type is TCP.

QTSS_RTSPSessionType

The QTSS_RTSPSessionType enumeration defines values that specify RTSP session
types. The enumeration is defined as

enum

{

qtssRTSPSession = 0,

qtssRTSPHTTPSession = 1,

qtssRTSPHTTPInputSession = 2

};

typedef UInt32 QTSS_RTSPSessionType;

254
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

Constant Descriptions
qtssRTSPSession

The session is an RTSP session.
qtssRTSPHTTPSession

The session is an RTSP session tunneled over HTTP.
qtssRTSPHTTPInputSession

The session is the input half of an RTSP session tunneled over HTTP.

Discussion
These session types are usually very short lived.

QTSS_ServerState

The QTSS_ServerState enumeration defines values that describe the server’s state.
Modules can set the server’s state by setting the value of the qtssSvrState attribute
in the QTSS_ServerObject object. The enumeration is defined as

enum

{

qtssStartingUpState = 0,

qtssRunningState = 1,

qtssRefusingConnectionsState= 2,

qtssFatalErrorState = 3,

qtssShuttingDownState = 4,

qtssIdleState = 5

};

typedef UInt32 QTSS_ServerState;

Constant Descriptions
qtssStartingUpState

The server is starting up.
qtssRunningState

The server is running.
qtssRefusingConnectionsState

Setting the server to this state causes the server to refuse new
connections.

C H A P T E R 4

QuickTime Streaming Server Module Reference

255
  Apple Computer, Inc. August 29, 2003

qtssFatalErrorState

Setting the server to this state causes the server to quit. When the
server is running in the background, setting the server to this state
causes the server to quit and restart (Mac OS X and POSIX
platforms).

qtssShuttingDownState

Setting the server to this state causes the server to quit.
qtssIdleState

Setting the server to this state causes the server to refuse new
connections and disconnect existing connections.

256
  Apple Computer, Inc. August 29, 2003

C H A P T E R 4

QuickTime Streaming Server Module Reference

	Contents
	Figures, Listings, and Tables
	About This Manual
	What’s New
	Conventions Used in This Manual
	For More Information

	Concepts
	Server Architecture
	Modules
	Content-Managing Modules
	Server-Support Modules
	Access Control Modules

	Protocols
	Data
	Classes
	Applications and Tools
	PlayListBroadcaster
	MP3Broadcaster
	StreamingProxy
	QTFileTools
	WebAdmin
	qtpasswd

	Source Organization
	Server.tproj
	CommonUtilitiesLib
	QTFileLib
	APICommonCode
	APIModules
	RTSPClientLib
	RTCPUtilitiesLib
	APIStubLib
	HTTPUtilitiesLib

	Requirements for Modules
	Main Routine
	Dispatch Routine

	Overview of QuickTime Streaming Server Operations
	Server Startup and Shutdown
	RTSP Request Processing

	Runtime Environment for QTSS Modules
	Server Time

	Naming Conventions
	Module Roles
	Register Role
	Initialize Role
	Shutdown Role
	Reread Preferences Role
	Error Log Role
	RTSP Roles
	RTSP Filter Role
	RTSP Route Role
	RTSP Preprocessor Role
	RTSP Request Role
	RTSP Postprocessor Role

	RTP Roles
	RTP Send Packets Role
	Client Session Closing Role

	RTCP Process Role

	QTSS Objects
	qtssAttrInfoObjectType
	qtssClientSessionObjectType
	qtssConnectedUserObjectType
	qtssDynamicObjectType
	qtssFileObjectType
	qttsModuleObjectType
	qtssModulePrefsObjectType
	QTSSAccessLogModule Preferences
	QTSSAccessModule Preferences
	QTSSAdminModule Preferences
	QTSSFileModule Preferences
	QTSSFlowControlModule Preferences
	QTSSHomeDirectoryModule Preferences
	QTSSMP3StreamingModule Preferences
	QTSSReflectorModule Preferences
	QTSSRefMovieModule Preferences
	QTSSRelayModule Preferences

	qtssPrefsObjectType
	qtssRTPStreamObjectType
	qtssRTSPHeaderObjectType
	qtssRTSPRequestObjectType
	qtssRTSPSessionObjectType
	qtssServerObjectType
	qtssTextMessageObjectType
	qtssUserProfileObjectType

	QTSS Streams
	QTSS Services
	Built-in Services

	Automatic Broadcasting
	Automatic Broadcasting Scenarios
	Pull Then Push
	Listen Then Push

	ANNOUNCE Requests and SDP
	Access Control of Announced Broadcasts
	Broadcaster-to-Server Example
	Additional Trace Examples
	Trace of QuickTime Broadcaster Using TCP
	Trace of UDP Broadcast with Negotiated Server Ports
	Trace of ANNOUNCE and RECORD Using UDP Transport

	Stream Caching
	Speed RTSP Header
	x-Transport-Options Header
	RTP Payload Meta-Information
	RTP Data
	Standard Format
	Compressed Format
	Negotiation for Use of Compressed Format

	x-Packet-Range RTSP Header

	Reliable UDP
	Acknowledgment Packets
	RTSP Negotiation

	Tunneling RTSP and RTP Over HTTP
	HTTP Client Request Requirements
	Sample Client GET Request
	Sample Client POST Request

	HTTP Server Reply Requirements
	Sample Server Reply to a GET Request

	RTSP Request Encoding
	Connection Maintenance
	Support For Other HTTP Features

	Tasks
	Building the Streaming Server
	Mac OS X
	POSIX
	Windows

	Building a QuickTime Streaming Server Module
	Compiling a QTSS Module into the Server
	Building a QTSS Module as a Code Fragment

	Debugging
	RTSP and RTP Debugging
	Source File Debugging Support

	Working with Attributes
	Getting Attribute Values
	Setting Attribute Values
	Adding Attributes

	Using Files
	Reading Files Using Callback Routines
	Implementing a QTSS File System Module
	File System Module Roles
	Sample Code for the Open File Role
	Implementing Asynchronous Notifications

	Using the Admin Protocol
	Access to Server Data
	Request Syntax
	Request Functionality
	Data References
	Request Options
	Command Options
	GET Command Option
	SET Command Option
	DEL Command Option
	ADD Command Option
	Parameter Options

	Attribute Access Types
	Data Types
	Server Responses
	Unauthorized Response
	OK Response
	Response Data
	Array Values
	Response Root
	Errors in Responses
	Request and Response Examples

	Changing Server Settings
	Getting and Setting Preferences
	Getting and Changing the Server’s State

	QuickTime Streaming Server Module Reference
	QTSS Callback Routines
	QTSS Utility Callback Routines
	QTSS_AddRole
	QTSS_New
	QTSS_Delete
	QTSS_Milliseconds
	QTSS_MilliSecsTo1970Secs

	QTSS Object Callback Routines
	QTSS_CreateObjectType
	QTSS_CreateObjectValue
	QTSS_LockObject
	QTSS_UnLockObject

	QTSS Attribute Callback Routines
	QTSS_AddInstanceAttribute
	QTSS_AddStaticAttribute
	QTSS_GetAttrInfoByID
	QTSS_GetAttrInfoByIndex
	QTSS_GetAttrInfoByName
	QTSS_GetNumAttributes
	QTSS_GetValue
	QTSS_GetValueAsString
	QTSS_GetValuePtr
	QTSS_IDForAttr
	QTSS_RemoveInstanceAttribute
	QTSS_RemoveValue
	QTSS_SetValue
	QTSS_SetValuePtr
	QTSS_StringToValue
	QTSS_TypeStringToType
	QTSS_TypeToTypeString
	QTSS_ValueToString

	Stream Callback Routines
	QTSS_Advise
	QTSS_Read
	QTSS_Seek
	QTSS_RequestEvent
	QTSS_SignalStream
	QTSS_Write
	QTSS_WriteV
	QTSS_Flush

	File System Callback Routines
	QTSS_OpenFileObject
	QTSS_CloseFileObject

	Service Callback Routines
	QTSS_AddService
	QTSS_IDForService
	QTSS_DoService

	RTSP Header Callback Routines
	QTSS_AppendRTSPHeader
	QTSS_SendRTSPHeaders
	QTSS_SendStandardRTSPResponse

	RTP Callback Routines
	QTSS_AddRTPStream
	QTSS_Play
	QTSS_Pause
	QTSS_Teardown

	QTSS Data Types
	QTSS Constants
	QTSS_AttrDataType
	QTSS_AttrPermission
	QTSS_AddStreamFlags
	QTSS_CliSesTeardownReason
	QTSS_EventType
	QTSS_OpenFileFlags
	QTSS_RTPPayloadType
	QTSS_RTPNetworkMode
	QTSS_RTPSessionState
	QTSS_RTPTransportType
	QTSS_RTSPSessionType
	QTSS_ServerState

